Published

2008-05-01

Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia)

Modelación no paramétrica de lluvias para la ciudad de Manizales, Colombia: una aplicación de modelos multinomiales de probabilidad y de probabilidades imprecisas

DOI:

https://doi.org/10.15446/ing.investig.v28n2.14888

Keywords:

uncertainty, non-parametric modelling, imprecise probability, multinomial probability distribution (en)
incertidumbre, modelación no paramétrica, probabilidades imprecisas, distribuciones de probabilidad multinomiales (es)

Authors

  • Ibsen Chivatá Cárdenas Instituto de investigaciones sobre incertidumbre

This article presents a rainfall model constructed by applying non-parametric modelling and imprecise probabilities; these tools were used because there was not enough homogeneous information in the study area. The area’s hydro logical information regarding rainfall was scarce and existing hydrological time series were not uniform. A distributed extended rainfall model was constructed from so-called probability boxes (p-boxes), multinomial probability distribution and confidence intervals (a friendly algorithm was constructed for non-parametric modelling by combining the last two tools). This model confirmed the high level of uncertainty involved in local rainfall modelling. Uncertainty encompassed the whole range (domain) of probability values thereby showing the severe limitations on information, leading to the conclusion that a detailed estimation of probability would lead to significant error. Nevertheless, relevant information was extracted; it was estimated that maximum daily rainfall threshold (70 mm) would be surpassed at least once every three years and the magnitude of uncertainty affecting hydrological parameter estimation. This paper’s conclusions may be of interest to non-parametric modellers and decisions-makers as such modelling and imprecise probability represents an alternative for hydrological variable assessment and maybe an obligatory procedure in the future. Its potential lies in treating scarce information and represents a robust modelling strategy for non-seasonal stochastic modelling conditions.

En este artículo se muestra el uso de métodos no paramétricos y de probabilidades imprecisas en el desarrollo de un modelo de precipitaciones. Se acude a estas herramientas debido a que no se dispone de información representativa y homogénea. En la zona, la información hidrológica sobre las precipitaciones es escasa y además las series hidrológicas existentes no son uniformes ni continuas. Se construyó un modelo distribuido de excedencias de precipitación y en su elaboración se acudió a las denominadas cajas de probabilidad, a distribuciones de probabilidad multinomiales y a la estimación de intervalos de confianza. La modelación no paramétrica se elaboró a partir de estas dos últimas herramientas, logrando una amigable propuesta de computación. El modelo permite observar los altos contenidos de incertidumbre que suelen presentarse al estudiar los patrones de lluvia en el área. La incertidumbre copa todo el dominio de valores de probabilidad y muestra las altas limitaciones de información, con lo que se concluye que una estimación puntual de probabilidades conduce a significativos errores. Se extrae información relevante como que el umbral de lluvia máxima diaria de 70 mm puede ser superado al menos una vez cada tres años, y las magnitudes de incertidumbre que afectan las estimaciones de parámetros hidrológicos. Las conclusiones de esta investigación determinan que la modelación no paramétrica y la estimación de probabilidades imprecisas no sólo representan una alternativa para la modelación hidrológica, sino que quizás sea un procedimiento obligado; su potencial radica en el tratamiento de información escasa y constituye una estrategia de modelación robusta en condiciones de no estacionalidad estocástica.

References

Almond, R. G., Discussion: Fuzzy Logic: Better Science? Or Better Engineering?, Technometrics, Vol. 37, No. 3, Disponible en http://links.jstor.org, 1995. DOI: https://doi.org/10.1080/00401706.1995.10484329

Bogardi, I., Duckstein, L., The Fuzzy Logic Paradigm of Risk Analysis., Conference Proceeding Risk-Based Decision making in Water Resources X, Reston: American Society of Civil Engineers, 2003. DOI: https://doi.org/10.1061/40694(2003)2

Bogardi, I., Coping with uncertainties in flood management., Transboundary Floods: Reducing Risks Through Flood Management, The Netherlands: Springer, 2006.

Borgman, L., New Nonparametric Methods in Risk Analysis Based on Resampling Techniques and Empirical Simulation, Proceedings of the International Conference., Civil Engineering in the Oceans VI. Baltimore, Maryland, USA: ASCE, 2004. DOI: https://doi.org/10.1061/40775(182)1

Chivatá, I., Contribuciones para el tratamiento de la incertidumbre en la estimación de la amenaza por fenómenos de remoción en masa, Tesis, Maestría en Medio Ambiente y Desarrollo, Manizales: Universidad Nacional de Colombia., 2007.

Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D. S., Sentz K., Constructing Probability Boxes and Dempster-Shafer Structures., Reporte SAND2002-4015. Disponible en www.sandia.gov/epistemic/Reports/SAND2002-4015.pdf, 2003. DOI: https://doi.org/10.2172/809606

Ferson, S., Hajagos, J. G., Arithmetic with uncertain numbers: rigorous and (often) best possible

answers, Reliability Engineering and System Safety, Vol. 85, Elsevier Science Ltd. B.V., 2004.

Goodman, L. A., On simultaneous confidence intervals for multinomial proportions, Technometrics, Vol. 7, No. 2, Disponible en http://links.jstor.org, 1965. DOI: https://doi.org/10.1080/00401706.1965.10490252

Hall, J. W., Lawry, J., Generation, combination and extension of random set approximations to coherent lower and upper probabilities., Reliability Engineering and System Safety, Vol.85, Elsevier Science Ltd. B.V., 2004. DOI: https://doi.org/10.1016/j.ress.2004.03.005

Masson, M. H., Denoeux, T., Inferring a possibility distribution from empirical data, Fuzzy sets and systems, Vol.157, Amsterdam: Elsevier Science Ltd. B.V., 2006. DOI: https://doi.org/10.1016/j.fss.2005.07.007

May, W. L., Johnson, W. D., A SAS macro for constructing simultaneous confidence intervals for multinomial pro portions., Comput. Methods Programs Biomed, Vol. 53, 1997. DOI: https://doi.org/10.1016/S0169-2607(97)01809-9

Nam, W-S., Shin, H -J., Heo, J-H, Kim. K – D., Regional Rainfall Frequency Analysis Based on Generalized Logistic Model., Memorias de World Water and Environmental Resources Congress 2005, Anchorage-Alaska: Raymond Walton, 2005. DOI: https://doi.org/10.1061/40792(173)488

Remeneiras, G., Tratado de hidrología aplicada, Barcelona: Editores técnicos asociados. S.A., 1974.

Williamson, R. C., Downs, T., Probabilistic arithmetic I: numerical methods for calculating convolutions and dependency bounds., International Journal of Approximate Reasoning, Vol.4, No.2, 1990. DOI: https://doi.org/10.1016/0888-613X(90)90022-T

How to Cite

APA

Chivatá Cárdenas, I. (2008). Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia). Ingeniería e Investigación, 28(2), 22–29. https://doi.org/10.15446/ing.investig.v28n2.14888

ACM

[1]
Chivatá Cárdenas, I. 2008. Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia). Ingeniería e Investigación. 28, 2 (May 2008), 22–29. DOI:https://doi.org/10.15446/ing.investig.v28n2.14888.

ACS

(1)
Chivatá Cárdenas, I. Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia). Ing. Inv. 2008, 28, 22-29.

ABNT

CHIVATÁ CÁRDENAS, I. Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia). Ingeniería e Investigación, [S. l.], v. 28, n. 2, p. 22–29, 2008. DOI: 10.15446/ing.investig.v28n2.14888. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14888. Acesso em: 22 jan. 2025.

Chicago

Chivatá Cárdenas, Ibsen. 2008. “Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia)”. Ingeniería E Investigación 28 (2):22-29. https://doi.org/10.15446/ing.investig.v28n2.14888.

Harvard

Chivatá Cárdenas, I. (2008) “Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia)”, Ingeniería e Investigación, 28(2), pp. 22–29. doi: 10.15446/ing.investig.v28n2.14888.

IEEE

[1]
I. Chivatá Cárdenas, “Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia)”, Ing. Inv., vol. 28, no. 2, pp. 22–29, May 2008.

MLA

Chivatá Cárdenas, I. “Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia)”. Ingeniería e Investigación, vol. 28, no. 2, May 2008, pp. 22-29, doi:10.15446/ing.investig.v28n2.14888.

Turabian

Chivatá Cárdenas, Ibsen. “Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia)”. Ingeniería e Investigación 28, no. 2 (May 1, 2008): 22–29. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14888.

Vancouver

1.
Chivatá Cárdenas I. Using multinomial and imprecise probability for non-parametric modelling of rainfall in Manizales (Colombia). Ing. Inv. [Internet]. 2008 May 1 [cited 2025 Jan. 22];28(2):22-9. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14888

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Alfonso Mariano Ramos-Cañón, Luis Felipe Prada-Sarmiento, Mario Germán Trujillo-Vela, Juan Pablo Macías, Ana Carolina Santos-R. (2016). Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia. Landslides, 13(4), p.671. https://doi.org/10.1007/s10346-015-0593-2.

Dimensions

PlumX

Article abstract page views

613

Downloads

Download data is not yet available.