Methylene blue degradation using chitosan-Fe2O3 composite and photo-Fenton
Degradación de azul de metileno usando material compuesto de quitosano-Fe2O3 y foto-Fenton
Degradação de azul de metileno usando composto de quitosana-Fe2O3 e foto-Fenton
DOI:
https://doi.org/10.15446/rev.colomb.quim.v52n2.109625Palabras clave:
Chitosan, Chitosan-Fe2O3, Methylene blue, Total organic carbon, Photodegradation (en)Quitosano, Quitosano-Fe2O3, Azul de metileno, carbono orgánico total, fotodegradación (es)
Quitosana, Quitosana-Fe2O3, Azul de metileno, Carbono orgânico total, Fotodegradação (pt)
Descargas
This study aims to study the photodegradation process of methylene blue using a synthetic chitosan-Fe2O3 composite and their characterization. Based on the characterization material synthetic, chitosan-Fe2O3 (1:1) composite showed the best material with the smallest crystal size (1.13 nm), the surface morphology was lumpy and had an uneven shape with the composition of the constituent (Carbon (C) 42.88%, Oxygen (O) 48.68%, and Iron (Fe) 29.90%), and showed the smallest energy band gap (1.41 eV) which led us to conclude that the formation of the chitosan-Fe2O3 composite can reduce the energy band gap of Fe2O3. The best composite material then was used to evaluate the activity in degrading methylene blue. The optimum condition in degrading was reached at a contact time of 180 min and pH 9 with a percentage decrease in methylene blue concentration of 90.00%. The effect of concentration variations occurred at 5 ppm with a decrease of 89.62%. Total organic carbon analysis showed that the decrease in methylene blue concentration reached 92.20%. Based on that, it is concluded that the chitosan-Fe2O3 composite could be a potential alternative material to degrade methylene blue.
Este estudio tiene como objetivo estudiar el proceso de fotodegradación del azul de metileno utilizando material sintético compuesto de quitosano-Fe2O3 y su caracterización. Con base en la caracterización del material sintético, el compuesto quitosano-Fe2O3 (1:1) mostró el mejor material con el tamaño de cristal más pequeño (1,13 nm), la morfología de la superficie era grumosa y tenía una forma desigual con la composición del constituyente (carbono (C) 42,88%, oxígeno (O) 48,68% y hierro (Fe) 29,90%), y mostró la banda prohibida de energía más pequeña (1,41 eV), lo que indica que la formación del compuesto de quitosano-Fe2O3 puede reducir la banda prohibida de energía de Fe2O3. Luego se utilizó el mejor material compuesto para ver su actividad en la degradación del azul de metileno. La condición óptima en la degradación se alcanzó con un tiempo de contacto de 180 min y pH 9 con una disminución porcentual en la concentración de azul de metileno del 90,00%. El efecto de las variaciones de concentración se presentó a 5 ppm con una disminución del 89,62%. El análisis de carbono orgánico total mostró que la disminución en la concentración de azul de metileno alcanzó el 92,20%. Con base en esto, se concluyó que el compuesto quitosano-Fe2O3 podría ser un material alternativo potencial para degradar el azul de metileno.
Este trabalho tem como objetivo estudar o processo de fotodegradação do azul de metileno utilizando material sintético compósito quitosana-Fe2O3 e sua caracterização. Com base na caracterização do material sintético, o compósito quitosana-Fe2O3 (1:1) apresentou o melhor material com o menor tamanho de cristal (1,13 nm), a morfologia da superfície era granulosa e apresentava formato irregular com a composição do constituinte (Carbono (C) 42,88%, Oxigênio (O) 48,68% e Ferro (Fe) 29,90%), e apresentou o menor gap de energia (1,41 eV) o que conclui que a formação do compósito quitosana-Fe2O3 pode reduzir o band gap de energia de Fe2O3. O melhor material compósito usado para ver sua atividade na degradação do azul de metileno. A condição ótima de degradação foi alcançada com tempo de contato de 180 minutos e pH 9 com diminuição percentual na concentração de azul de metileno de 90,00%. O efeito das variações de concentração ocorreu a 5 ppm com diminuição de 89,62%. A análise do carbono orgânico total mostrou que a diminuição da concentração de azul de metileno atingiu 92,20%. com base nisso, concluiu que o compósito quitosana-Fe2O3 poderia ser um potencial material alternativo para degradar o azul de metileno.
Referencias
M. T. Yagub, T. K. Sen, S. Afroze and H. M. Ang, “Dye and its removal from aqueous solution by adsorption: a review”, Adv. Colloid Interface Sci., vol. 209, pp. 172−184, 2014. DOI: https://doi.org/10.1016/j.cis.2014.04.002 DOI: https://doi.org/10.1016/j.cis.2014.04.002
M. Mondal and S. De, “Treatment of textile plant effluent by hollow fiber nanofiltration membrane and multi-component steady state modeling”, Chemical Engineering Journal, vol. 285, pp. 304–318, Feb. 2016. DOI: https://doi.org/10.1016/j.cej.2015.10.005. DOI: https://doi.org/10.1016/j.cej.2015.10.005
L. Ai, Y. Zhou and J. Jiang, “Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance”, Desalination, vol. 266, no. 1–3, pp. 72–77, Jan. 2011. DOI: https://doi.org/10.1016/j.desal.2010.08.004. DOI: https://doi.org/10.1016/j.desal.2010.08.004
S. Chin, E. Park, M. Kim and J. Jurng, “Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process”, Powder Technol, vol. 201, no. 2, pp. 171–176, Jul. 2010. DOI: https://doi.org/10.1016/j.powtec.2010.03.034. DOI: https://doi.org/10.1016/j.powtec.2010.03.034
H. Karaer and I. Kaya, “Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue”, Microporous Mesoporous Mater, vol. 232, pp. 26-38, 2021. DOI: https://doi.org/10.1016/j.molstruc.2021.130071 DOI: https://doi.org/10.1016/j.molstruc.2021.130071
O. Duman, S. Tunç, T. G. Polat and B. K. I. Bozoǧlan, “Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption”, Carbohydr. Polym, vol. 147, pp. 79−88, 2016. DOI: https://doi.org/10.1016/j.carbpol.2016.03.099 DOI: https://doi.org/10.1016/j.carbpol.2016.03.099
H. Mittal, N. Ballav and S. B. Mishra, “Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of methylene blue from aqueous solution”, Ind. Eng. Chem. Res., vol. 20, no. 4, pp. 2184−2192, 2014. DOI: https://doi.org/10.1016/j.jiec.2013.09.049 DOI: https://doi.org/10.1016/j.jiec.2013.09.049
R. A. Solano, L. D. De León, G. De Ávila and A. P. Herrera, “Polycyclic aromatic hydrocarbons (PAHs) adsorption from aqueous solution using chitosan beads modified with thiourea, TiO2 and Fe3O4 nanoparticles”, Environ. Technol. Innov., vol. 21, pp. 101378, 2021. DOI: https://doi.org/10.1016/j.eti.2021.101378
R. Wang et al., “Fabrication of a corn stalk derived cellulose-based bio-adsorbent to remove Congo red from wastewater: Investigation on its ultra-high adsorption performance and mechanism”, Int J Biol Macromol, vol. 241, pp. 1−10, 2023. DOI: https://doi.org/10.1016/j.ijbiomac.2023.124545 DOI: https://doi.org/10.1016/j.ijbiomac.2023.124545
Q. Wang, H. Li, X. Yu, Y. Jia, Y. Chang and S. Gao, “Morphology regulated Bi2WO6 nanoparticles on TiO2 nanotubes by solvothermal Sb3+ doping as effective photocatalysts for wastewater treatment”, Electrochim Acta, vol. 330, pp. 1−12, 2020. DOI:https://doi.org/10.1016/j.electacta.2019.135167 DOI: https://doi.org/10.1016/j.electacta.2019.135167
S. Sarkar, N. T. Ponce, A. Banerjee, R. Bandopadhyay, S. Rajendran and E. Lichtfouse, “Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review”, Environmental Chemistry Letters, vol. 18, pp. 1569–1580, 2020. DOI: https://doi.org/10.1007/s10311-020-01021-w DOI: https://doi.org/10.1007/s10311-020-01021-w
S. Shekar, G. C. K. Alkanad, A. Hezam, A. Alsalme, N. Al-Zaqri and N. K. Lokanath, “Enhanced photo-fenton activity over a sunlight-driven ignition synthesized Α-Fe2O3-Fe3O4/CeO2 heterojunction catalyst enriched with oxygen vacancies”, J. Mol. Liq., vol. 335, pp. 1−6, 2021. DOI: https://doi.org/10.1016/j.molliq.2021.116186 DOI: https://doi.org/10.1016/j.molliq.2021.116186
G. Zanchettin, G. S. Falk, S. Y. G. González and D. Hotza, “High performance magnetically recoverable Fe3O4 nanocatalysts: fast microwave synthesis and photo-fenton catalysis under visible-light”, Chem. Eng. Process. Intensif., vol. 166, pp. 1−8, 2021. DOI: https://doi.org/10.1016/j.cep.2021.108438 DOI: https://doi.org/10.1016/j.cep.2021.108438
W. He, Z. Li, S. Lv, M. Niu, W. Zhou, J. Li, R. Lu, H. Gao, C. Pan and S. Zhang, “Facile synthesis of Fe3O4@MIL-100(Fe) towards enhancing photo-Fenton like degradation of levofloxacin via a synergistic effect between Fe3O4 and MIL-100(Fe)”, Chem. Eng. J., vol. 409, pp.1−13, 2021. DOI: https://doi.org/10.1016/j.cej.2020.128274 DOI: https://doi.org/10.1016/j.cej.2020.128274
A. Abharya and A. Gholizadeh, “Synthesis of a Fe3O4-rGO-ZnO-catalyzed photo-Fenton system with enhanced photocatalytic performance”, Ceram. Int., vol. 47, pp. 12010−12019, 2021. DOI: https://doi.org/10.1016/j.ceramint.2021.01.044 DOI: https://doi.org/10.1016/j.ceramint.2021.01.044
A. Foroughnia, A. D. Khalaji, E. Kolvari and N. Koukabi, “Synthesis of new chitosan Schiff base and its Fe2O3 nanocomposite: Evaluation of methyl orange removal and antibacterial activity”, Int. J. Biol. Macromol., vol. 177, pp. 83-91, 2021. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.068 DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.068
L. M. Zhao, L. E. Shi, Z. L. Zhang, J. M. Chen, D. D. Shi, J. Yang and Z. X. Tang, “Preparation and application of chitosan nanoparticles and nanofibers”, Brazilian J. Chem. Eng., vol. 28, pp. 353−362, 2011. DOI : https://doi.org/10.1590/S0104-66322011000300001 DOI: https://doi.org/10.1590/S0104-66322011000300001
B. R. Broujeni, A. Nilchi, A. H. Hassani and R. Saberi, “Application of chitosan/Al2O3 nano composite for the adsorption of thorium (IV) ion from aqueous solution”, Water Sci. Technol, vol. 78, pp. 708−720, 2018. DOI: https://doi.org/10.5004/dwt.2018.21760 DOI: https://doi.org/10.2166/wst.2018.343
R. Ahmad and A. Mirza, “Facile one pot green synthesis of chitosan-iron oxide (CS-Fe2O3) nanocomposite: removal of Pb(II) and Cd(II) from synthetic and industrial wastewater”, J. Clean. Prod., vol. 186, pp. 342−352, 2018. DOI: https://doi.org/10.1016/j.jclepro.2018.03.075 DOI: https://doi.org/10.1016/j.jclepro.2018.03.075
M. Coronell, G. Toscano-Lucas, R. Solano and A. Herrera, “Green Synthesis of Silver-Doped Titanium Dioxide Nanostructures for Acetaminophen Degradation Under Solar Radiation”, Ingenieria Y Universidad, vol. 26, pp. 1−19, 2022. DOI: https://doi.org/10.11144/Javeriana.iued26.gsst DOI: https://doi.org/10.11144/Javeriana.iued26.gsst
R. A. Solano, L. D. De León, G. De Ávila and A. P. Herrera, “Polycyclic aromatic hydrocarbons (PAHs) adsorption from aqueous solution using chitosan beads modified with thiourea, TiO2 and Fe3O4 nanoparticles”, Environ Technol Innov., vol. 21, pp. 1−15, 2021. DOI: https://doi.org/10.1016/j.eti.2021.101378 DOI: https://doi.org/10.1016/j.eti.2021.101378
R. A. Solano Pizarro and A. P. Herrera Barros, “Cypermethrin elimination using Fe-TiO2 nanoparticles supported on coconut palm spathe in a solar flat plate photoreactor”, Advanced Composites Letters, vol. 29, pp. 1−13, 2020. DOI: https://doi.org/10.1177/2633366X20906164 DOI: https://doi.org/10.1177/2633366X20906164
M. Alagiri and S. B. A. Hamid, “Sol–gel synthesis of α-Fe2O3 nanoparticles and its photocatalytic application”, Sol-Gel Sci. Technol., vol. 74, pp. 783−789, 2015. DOI: https://doi.org/10.1007/s10971-015-3663-y DOI: https://doi.org/10.1007/s10971-015-3663-y
M. B. Badry, M. A. Wahba, R. K. Khaled and M. Moawad, “Hydrothermally Assisted Synthesis of Magnetic Iron Oxide-Chitosan Nanocomposites: Electrical and Biological Evaluation”, Biointerface Res. Appl. Chem., vol. 12, pp. 2229−2241, 2022. DOI: https://doi.org/10.33263/BRIAC122.22292241 DOI: https://doi.org/10.33263/BRIAC122.22292241
L. Vayssieres, C. Sathe, S. M. Butorin, D. K. Shuh, J. Nordgren and J. Guo, “One-Dimensional Quantum-Confinement Effect in α-Fe2O3 Ultrafine Nanorod Arrays”, Adv. Mater., vol. 17, pp. 2320−2323, 2005. DOI: https://doi.org/ 10.1002/adma.200500992 DOI: https://doi.org/10.1002/adma.200500992
A. Badawi, E. M. Ahmed, N. Y. Mostafa, F. Abdel-Wahab and S. E. Alomairy, “Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles”, J. Mater. Sci. Mater. Electron, vol. 28, pp. 10877−10884, 2017. DOI: https://doi.org/10.1007/s10854-017-6866-x DOI: https://doi.org/10.1007/s10854-017-6866-x
N. I. M. Fauzi, Y. W. Fen, N. A. S. Omar, S. Saleviter, W. M. E. M. M. Daniyal, H. S. Hashim and M. Nasrullah, “Nanostructured chitosan/maghemite composites thin film for potential optical detection of mercury ion by surface plasmon resonance investigation”, Polymers, vol. 12, pp. 1−13, 2020. DOI: https://doi.org/10.3390/polym12071497 DOI: https://doi.org/10.3390/polym12071497
F. Chai, K. Li, C. Song and X. Guo, “Synthesis of magnetic porous Fe3O4/C/Cu2O composite as an excellent photo-Fenton catalyst under neutral condition”, J Colloid Interface Sci, vol. 475, pp. 119–125, 2016. DOI: https://doi.org/10.1016/j.jcis.2016.04.047. DOI: https://doi.org/10.1016/j.jcis.2016.04.047
R. Khurram, Z. Wang, M. F. Ehsan, S. Peng, M. Shaffiq and B. Khan, “Synthesis and characterization of an α-Fe2O3/ZnTe heterostructure for photocatalytic degradation of Congo red, methyl orange and methylene blue”, RSC Adv., vol.10, pp. 44997−45007, 2020. DOI: https://doi.org/10.1039/D0RA06866G DOI: https://doi.org/10.1039/D0RA06866G
M. A. Bhatti, A. A. Shah, K. F. Almaani, A. Tahira, A. D. Chandio, M. Willander, O. Nur, A. Q. Mugheri, A. L. Bhatti, B. Waryani, A. Nafady and Z. H. Ibupoto, “TiO2/ZnO Nanocomposite Material for Efficient Degradation of Methylene Blue”, Journal of Nanoscience and Nanotechnology, vol. 21, pp. 2511–2519, 2021. DOI: http://doi.org/10.1166/jnn.2021.19107. DOI: https://doi.org/10.1166/jnn.2021.19107
A. Mendis, C. Thambiliyagodage, G. Ekanayake, H. Liyanaarachchi, M. Jayanetti and S. Vigneswaran, “Fabrication of Naturally Derived Chitosan and Ilmenite Sand-Based TiO2/Fe2O3/Fe-N-Doped Graphitic Carbon Composite for Photocatalytic Degradation of Methylene Blue under Sunlight”, Molecules, vol. 28, pp. 1−25, 2023. DOI: http://doi.org/10.3390/molecules28073154 DOI: https://doi.org/10.3390/molecules28073154
Y. D. Shahamat, M. Sadeghi, A. Shahryari, N. Okhovat, F. B. Asl and M. M. Baneshi, “Heterogeneous catalytic ozonation of 2, 4-dinitrophenol in aqueous solution by magnetic carbonaceous nanocomposite: catalytic activity and mechanism”, Desalination and Water Treatment, vol. 57, pp. 20447−20456, 2016. DOI: http://doi.org10.1080/19443994.2015
H. Zhang, J. Liu, T. Xu, W. Ji and X. Zong, “Recent Advances on Small Band Gap Semiconductor Materials (≤2.1 eV) for Solar Water Splitting”, Catalysts, vol. 13, pp. 728, 2023. DOI: http://doi.org/10.3390/catal13040728 DOI: https://doi.org/10.3390/catal13040728
Y. D. Shahamat, M. Sadeghi, A. Shahryari, N. Okhovat, F. Bahrami and M. M. Baneshi, “Heterogeneous catalytic ozonation of 2,4-dinitrophenol in aqueous solution by magnetic carbonaceous nanocomposite: Catalytic activity and mechanisme Desalin”, Water Treat., vol. 57, pp. 20447−20456, 2016. DOI: https://doi.org/10.1080/19443994.2015.1115372 DOI: https://doi.org/10.1080/19443994.2015.1115372
S. Fassi, K. Djebbar, I. A-Bousnoubra, H. Chenini and T. Sehili, “Oxidation of bromocresol green by different advanced oxidation processes: Fenton, Fenton-like, photo-Fenton, photo-Fenton-like and solar light. Comparative study”, Desalin. Water Treat, vol. 52, pp. 4982−4982, 2014. DOI: https://doi.org/10.1080/19443994.2013.809971 DOI: https://doi.org/10.1080/19443994.2013.809971
M. Shaban, M. R. Abukhadra, S. S. Ibrahim and M. G. Shahien, “Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite—response surface optimization”, Appl. Water Sci., vol. 7, pp. 4743−4756, 2017. DOI: https://doi.org/10.1007/s13201-017-0637-y DOI: https://doi.org/10.1007/s13201-017-0637-y
J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren and W. J. Zhang, “Adsorption Removal of Congo Red from aqueous solution by polyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis”, Alloys Compd., vol. 633, pp. 338−346, 2015. DOI: https://doi.org/10.1016/j.jallcom.2015.02.048 DOI: https://doi.org/10.1016/j.jallcom.2015.02.048
K. A. Isai and V. S. Shrivastava, “Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study”, SN Appl. Sci., vol. 1, pp. 1−11, 2019. DOI: https://doi.org/10.1007/s42452-019-1279-5 DOI: https://doi.org/10.1007/s42452-019-1279-5
A. Hou, B. Hu and J. Zhu, “Photocatalytic Degradation of Methylene Blue over TiO2 Pretreated with Varying Concentrations of NaOH”, Catalysts, vol. 8, pp. 1−13, 2018. DOI: https://doi.org/10.3390/catal8120575 DOI: https://doi.org/10.3390/catal8120575
H. Selpiana, A. B. Aritonang, M. A. Wibowo, W. Warsidah and A. Adhitiawarman, “Photocatalytic Degradation Of Methylene Blue Using Fe2O3-TiO2/Kaolinite Under Visible Light Illumination”, JKPK, vol. 7, pp. 277−286. DOI: https://doi.org/10.20961/jkpk.v7i3.66567 DOI: https://doi.org/10.20961/jkpk.v7i3.66567
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Desnelli, Kurnia Ramadhina, Daniel Alfarado, Fatma, Ady Mara, Muhammad Said

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC. Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).