Publicado

2024-04-10

Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli

Nanocomposite based on chitosan/CF/CN beads as a promising inactivator of Escherichia coli

Nanocompósito baseado em microesferas de quitosana/CF/CN como um promissor inativador de Escherichia coli

DOI:

https://doi.org/10.15446/rev.colomb.quim.v52n2.111340

Palabras clave:

Nanocompósitos, Ferrita de cobalto, quitosano, nitruro de carbono, fotocatálisis, inactivación bacteriana (es)
nanocompósitos, quitosana, ferrita de cobalto, nitreto de carbono, fotocatálise, inativação bacteriana (pt)
nanocomposites, chitosan, cobalt ferrite, carbon nitride, photocatalysis, bacterial inactivation (en)

Descargas

Autores/as

  • Alberto Corzo Lucioni Universidad Nacional de Ingeniería. Lima https://orcid.org/0000-0003-1866-0886
  • Hugo Alarcón Cavero Universidad Nacional de Ingeniería
  • Juan Montes de Oca Ávalos Universidad Naconal de Ingeniería
  • Samuel Saire Saire Universidad Nacional de Ingeniería
  • Silvia Canchari Chacón Universidad Nacional de Ingeniería
  • Katherina Changanaqui Barrientos Universidad Nacional de Ingeniería
  • Katherine Revollar Casas Universidad Nacional de Ingeniería

La presente investigación plantea la producción de un material compuesto basado en las nanohojas de nitruro de carbono grafítico (g-CN) recubiertas con nanopartículas de ferrita de cobalto, CoFe2O4 (CF), y embebidas en quitosano entrecruzado, con la finalidad de aplicarlo en procesos de inactivación fotocatalítica de cuerpos de agua contaminados con bacterias, así como en la degradación oxidativa de ibuprofeno, utilizando una fuente de radiación de 400 nm y 10 W.

El g-CN fue obtenido por descomposición térmica de melamina o urea y la CF a partir de FeCl2.4H2O y Co(NO3)2.6H2O en medio alcalino y en presencia de g-CN. El material obtenido fue dispersado en solución acética de quitosano y se formaron perlas por goteo sobre solución de NaOH 2M. Los materiales sintetizados fueron caracterizados por difracción de Rayos X (DRX), espectroscopía infrarroja con transformada de Fourier (FTIR) y microscopía electrónica de barrido por emisión de campo (FESEM).

El compósito final (quitosano/1CF5g-CN_m) alcanzó un valor cercano al 51% de eficiencia de degradación fotocatalítica oxidativa de ibuprofeno en solución acuosa. En cuanto a las pruebas de inactivación bacteriana de Escherichia coli, se alcanzó una disminución de hasta dos órdenes de magnitud, correspondiente a un 21% al final del proceso fotocatalítico.

This research proposes the production of a composite material consisting of nanosheets of graphitic carbon nitride (g-CN) coated with cobalt ferrite nanoparticles (CF) and embedded in cross-linked chitosan. The aim of the work was to apply this material in photocatalytic inactivation processes of water bodies polluted with bacteria, as well as in the oxidative degradation of ibuprofen, using a 400 nm and 10 W radiation source.

The g-CN was obtained through the thermal decomposition of melamine or urea, and CF was produced from FeCl2.4H2O and Co(NO3)2.6H2O in an alkaline medium in the presence of g-CN nanosheets. The resulting material was dispersed in an acetic chitosan solution, forming beads by dripping the mixture onto 2M NaOH solution. The synthesized materials were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (FESEM).

The final composite (chitosan/1CF5g-CN_m) achieved a yield close to 51% for the oxidative photocatalytic degradation efficiency of ibuprofen in aqueous solution. Regarding bacterial inactivation tests of Escherichia coli, a reduction of up to two orders of magnitude, corresponding to 21% at the end of the photocatalytic process, was attained.

A presente pesquisa propõe a produção de um material composto baseado em nanofolhas de carbono grafítico (g-CN) revestidas com nanopartículas de ferrita de cobalto, CoFe2O4 (CF), e incorporadas em quitosano reticulado, com o objetivo de aplicá-lo em processos de inativação fotocatalítica de corpos d'água contaminados com bactérias, assim como na degradação oxidativa de ibuprofeno, utilizando uma fonte de radiação de 400 nm e 10 W.

O g-CN foi obtido por decomposição térmica de melamina ou ureia, e a CF a partir de FeCl2.4H2O e Co(NO3)2.6H2O em meio alcalino na presença de g-CN. O material obtido foi disperso em solução acética de quitosano, e pérolas foram formadas por gotejamento sobre uma solução de NaOH 2M. Os materiais sintetizados foram caracterizados por difração de raios-X (DRX), espectroscopia infravermelha com transformada de Fourier (FTIR) e microscopia eletrônica de varredura por emissão de campo (FESEM).

O compósito final (quitosano/1CF5g-CN_m) atingiu um valor próximo a 51% de eficiência na degradação fotocatalítica oxidativa de ibuprofeno em solução aquosa. Quanto aos testes de inativação bacteriana de Escherichia coli, observou-se uma redução de até dois ordens de magnitude, correspondendo a 21% no final do processo fotocatalítico.

Referencias

M. A. Montgomery y M. Elimelech, “Water And Sanitation in Developing Countries: Including Health in the Equation”, Environ. Sci. Technol., vol. 41, nro. 1, pp. 17-24, ene. 2007. DOI: https://doi.org/10.1021/es072435t DOI: https://doi.org/10.1021/es072435t

C. Chu, E. C. Ryberg, S. K. Loeb, M.-J. Suh y J.-H. Kim, “Water Disinfection in Rural Areas Demands Unconventional Solar Technologies”, Acc. Chem. Res., vol. 52, nro. 5, pp. 1187-1195, may. 2019. DOI: https://doi.org/10.1021/acs.accounts.8b00578 DOI: https://doi.org/10.1021/acs.accounts.8b00578

L. F. Timmermann, K. Ritter, D. Hillebrandt y T. Küpper, “Drinking water treatment with ultraviolet light for travelers – Evaluation of a mobile lightweight system”, Travel Med. Infect. Dis., vol. 13, nro. 6, pp. 466-474, nov. 2015. DOI: https://doi.org/10.1016/j.tmaid.2015.10.005 DOI: https://doi.org/10.1016/j.tmaid.2015.10.005

G.-Q. Li, W.-L. Wang, Z.-Y. Huo, Y. Lu y H.-Y. Hu, “Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli”, Water Res., vol. 126, pp. 134-143, dic. 2017. DOI: https://doi.org/10.1016/j.watres.2017.09.030 DOI: https://doi.org/10.1016/j.watres.2017.09.030

Z. O. Nazar y N. O. A. Al-Musawi, “Using Ultraviolet Technique for Well Water Disinfection”, IOP Conf. Ser. Earth Environ. Sci., vol. 856, nro. 1, pp. 1-11, sep. 2021. DOI: https://doi.org/10.1088/1755-1315/856/1/012037 DOI: https://doi.org/10.1088/1755-1315/856/1/012037

D. Stefán, N. Erdélyi, B. Izsák, G. Záray y M. Vargha, “Formation of chlorination by-products in drinking water treatment plants using breakpoint chlorination”, Microchem. J., vol. 149, pp. 1-8, sep. 2019. DOI: https://doi.org/10.1016/j.microc.2019.104008 DOI: https://doi.org/10.1016/j.microc.2019.104008

Y. Yeom et al., “A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants”, Chem. Eng. J., vol. 424, pp. 1-47, nov. 2021. DOI: https://doi.org/10.1016/j.cej.2021.130053 DOI: https://doi.org/10.1016/j.cej.2021.130053

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas y A. M. Mayes, “Science and technology for water purification in the coming decades”, Nature, vol. 452, nro. 7185, pp. 301-310 mar. 2008. DOI: https://doi.org/10.1038/nature06599 DOI: https://doi.org/10.1038/nature06599

J. Wang y H. Chen, “Catalytic ozonation for water and wastewater treatment: Recent advances and perspective”, Sci. Total Environ., vol. 704, pp. 1-8, feb. 2020. DOI: https://doi.org/10.1016/j.scitotenv.2019.135249 DOI: https://doi.org/10.1016/j.scitotenv.2019.135249

T. Azuma, M. Usui y T. Hayashi, “Inactivation of Antibiotic-Resistant Bacteria in Wastewater by Ozone-Based Advanced Water Treatment Processes”, Antibiotics, vol. 11, nro. 2, feb. 2022. DOI: https://doi.org/10.3390/antibiotics11020210 DOI: https://doi.org/10.3390/antibiotics11020210

B. K. SaifAddin et al., “AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates”, ACS Photonics, vol. 7, nro. 3, pp. 554-561, mar. 2020. DOI: https://doi.org/10.1021/acsphotonics.9b00600 DOI: https://doi.org/10.1021/acsphotonics.9b00600

B. Yang et al., “Thermal Transport of AlN/Graphene/3C-SiC Typical Heterostructures with Different Crystallinities of Graphene”, ACS Appl. Mater. Interfaces, vol. 15, nro. 1, pp. 2384-2395, ene. 2023. DOI: https://doi.org/10.1021/acsami.2c17661 DOI: https://doi.org/10.1021/acsami.2c17661

Z. Li et al., “Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China”, Water Res., vol. 157, pp. 247-257, jun. 2019. DOI: https://doi.org/10.1016/j.watres.2019.03.072 DOI: https://doi.org/10.1016/j.watres.2019.03.072

K. C. Barrientos, D. E. A. Iparraguirre y H. A. A. Cavero, “Síntesis y caracterización de nanocompuestos Fe3O4/Ag: su efecto contra Enterobacter aerogenes y Enterococcus faecalis”, Rev. Colomb. Quím., vol. 48, nro. 2, pp. 33-39, may. 2019. DOI: https://doi.org/10.15446/rev.colomb.quim.v48n2.73724 DOI: https://doi.org/10.15446/rev.colomb.quim.v48n2.73724

D. P. Linklater et al., “Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes”, Adv. Mater., vol. 32, nro. 52, pp. 1-15, 2020. DOI: https://doi.org/10.1002/adma.202005679 DOI: https://doi.org/10.1002/adma.202070389

F. Sami El-banna, M. E. Mahfouz, S. Leporatti, M. El-Kemary y N. A. N. Hanafy, “Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels”, Appl. Sci., vol. 9, nro. 11, pp. 1-11, ene. 2019. DOI: https://doi.org/10.3390/app9112193 DOI: https://doi.org/10.3390/app9112193

M. F. Hamza, Y. Wei, K. Althumayri, A. Fouda y N. A. Hamad, “Synthesis and Characterization of Functionalized Chitosan Nanoparticles with Pyrimidine Derivative for Enhancing Ion Sorption and Application for Removal of Contaminants”, Materials, vol. 15, nro. 13, pp. 1-15, ene. 2022. DOI: https://doi.org/10.3390/ma15134676 DOI: https://doi.org/10.3390/ma15134676

V. Mikušová y P. Mikuš, “Advances in Chitosan-Based Nanoparticles for Drug Delivery”, Int. J. Mol. Sci., vol. 22, nro. 17, pp. 1-17, ene. 2021. DOI: https://doi.org/10.3390/ijms22179652 DOI: https://doi.org/10.3390/ijms22179652

M. Korica et al., “Chitosan Nanoparticles Functionalized Viscose Fabrics as Potentially Durable Antibacterial Medical Textiles”, Materials, vol. 14, nro. 13, pp. 1-13, ene. 2021. DOI: https://doi.org/10.3390/ma14133762 DOI: https://doi.org/10.3390/ma14133762

N. E.-A. El-Naggar, A. M. Shiha, H. Mahrous y A. B. A. Mohammed, “Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi drug resistant biofilm-forming Acinetobacter baumannii”, Sci. Rep., vol. 12, nro. 1, pp. 1-18, nov. 2022. DOI: https://doi.org/10.1038/s41598-022-24303-5 DOI: https://doi.org/10.1038/s41598-022-24303-5

J. Li et al., “Characteristics of chitosan fiber and their effects towards improvement of antibacterial activity”, Carbohydr. Polym., vol. 280, pp. 1-9, mar. 2022. DOI: https://doi.org/10.1016/j.carbpol.2021.119031 DOI: https://doi.org/10.1016/j.carbpol.2021.119031

D. Yan, Y. Li, Y. Liu, N. Li, X. Zhang y C. Yan, “Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections”, Molecules, vol. 26, nro. 23, pp. 1-27, ene. 2021. DOI: https://doi.org/10.3390/molecules26237136 DOI: https://doi.org/10.3390/molecules26237136

C.-L. Ke, F.-S. Deng, C.-Y. Chuang y C.-H. Lin, “Antimicrobial Actions and Applications of Chitosan”, Polymers, vol. 13, nro. 6, pp. 1-21, ene. 2021. DOI: https://doi.org/10.3390/polym13060904 DOI: https://doi.org/10.3390/polym13060904

E. Gastelo et al., “Elimination of Escherichia coli in Water Using Cobalt Ferrite Nanoparticles: Laboratory and Pilot Plant Experiments”, Materials, vol. 12, nro. 13, pp. 1-12, ene. 2019. DOI: https://doi.org/10.3390/ma12132103 DOI: https://doi.org/10.3390/ma12132103

A. Sanmugam et al., “Synthesis of chitosan based reduced graphene oxide-CeO2 nanocomposites for drug delivery and antibacterial applications”, J. Mech. Behav. Biomed. Mater., vol. 145, pp. 1-10, sep. 2023. DOI: https://doi.org/10.1016/j.jmbbm.2023.106033 DOI: https://doi.org/10.1016/j.jmbbm.2023.106033

Z. Su et al., “Chitosan/Silver Nanoparticle/Graphene Oxide Nanocomposites with Multi-Drug Release, Antimicrobial, and Photothermal Conversion Functions”, Materials, vol. 14, nro. 9, pp. 1-17, ene. 2021. DOI: https://doi.org/10.3390/ma14092351 DOI: https://doi.org/10.3390/ma14092351

D. Arikal y A. Kallingal, “Photocatalytic degradation of azo and anthraquinone dye using TiO2/MgO nanocomposite immobilized chitosan hydrogels”, Environ. Technol., vol. 42, nro. 15, pp. 2278-2291, jul. 2021. DOI: https://doi.org/10.1080/09593330.2019.1701094 DOI: https://doi.org/10.1080/09593330.2019.1701094

S. Zhang et al., “In Situ Synthesis of Water-Soluble Magnetic Graphitic Carbon Nitride Photocatalyst and Its Synergistic Catalytic Performance”, ACS Appl. Mater. Interfaces, vol. 5, nro. 23, pp. 12735-12743, dic. 2013. DOI: https://doi.org/10.1021/am404123z DOI: https://doi.org/10.1021/am404123z

Y. Yang et al., “Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst”, Appl. Catal. B Environ., vol. 142-143, pp. 828-837, oct. 2013. DOI: https://doi.org/10.1016/j.apcatb.2013.06.026 DOI: https://doi.org/10.1016/j.apcatb.2013.06.026

N. Bao, X. Hu, Q. Zhang, X. Miao, X. Jie y S. Zhou, “Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity”, Appl. Surf. Sci., vol. 403, pp. 682-690, may. 2017. DOI: https://doi.org/10.1016/j.apsusc.2017.01.256 DOI: https://doi.org/10.1016/j.apsusc.2017.01.256

H.-B. Fang, Y. Luo, Y.-Z. Zheng, W. Ma y X. Tao, “Facile Large-Scale Synthesis of Urea-Derived Porous Graphitic Carbon Nitride with Extraordinary Visible-Light Spectrum Photodegradation”, Ind. Eng. Chem. Res., vol. 55, nro. 16, pp. 4506-4514, abr. 2016. DOI: https://doi.org/10.1021/acs.iecr.6b00041 DOI: https://doi.org/10.1021/acs.iecr.6b00041

C. Yao, et al., “Facile surface modification of textiles with photocatalytic carbon nitride nanosheets and the excellent performance for self-cleaning and degradation of gaseous formaldehyde”, Journal of Colloid and Interface Science, vol. 533, pp. 144-153, ene. 2019. DOI: https://doi.org/10.1016/j.jcis.2018.08.058 DOI: https://doi.org/10.1016/j.jcis.2018.08.058

S. Saire-Saire et al., “Green synthesis of Au decorated CoFe 2 O 4 nanoparticles for catalytic reduction of 4-nitrophenol and dimethylphenylsilane oxidation”, RSC Adv., vol. 9, nro. 38, pp. 22116-22123, 2019. DOI: https://doi.org/10.1039/C9RA04222A DOI: https://doi.org/10.1039/C9RA04222A

M. A. Alcudia-Ramos et al., “Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production”, Ceram. Int., vol. 46, nro. 1, pp. 38-45, ene. 2020. DOI: https://doi.org/10.1016/j.ceramint.2019.08.228 DOI: https://doi.org/10.1016/j.ceramint.2019.08.228

P. Praus et al., “The presence and effect of oxygen in graphitic carbon nitride synthetized in air and nitrogen atmosphere”, Appl. Surf. Sci., vol. 529, pp. 1-28, nov. 2020. DOI: https://doi.org/10.1016/j.apsusc.2020.147086 DOI: https://doi.org/10.1016/j.apsusc.2020.147086

Y. Hong, C. Li, Z. Fang, B. Luo y W. Shi, “Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution”, Carbon, vol. 121, pp. 463-471, sep. 2017. DOI: https://doi.org/10.1016/j.carbon.2017.06.020 DOI: https://doi.org/10.1016/j.carbon.2017.06.020

M. A. Hassan, A. M. Omer, E. Abbas, W. M. A. Baset y T. M. Tamer, “Preparation, physicochemical characterization and antimicrobial activities of novel two phenolic chitosan Schiff base derivatives”, Sci. Rep., vol. 8, nro. 1, pp. 1-14, jul. 2018. DOI: https://doi.org/10.1038/s41598-018-29650-w DOI: https://doi.org/10.1038/s41598-018-29650-w

S. Hesami, S. Safi, K. Larijani, H. N. Badi, V. Abdossi y M. Hadidi, “Synthesis and characterization of chitosan nanoparticles loaded with greater celandine (Chelidonium majus L.) essential oil as an anticancer agent on MCF-7 cell line”, Int. J. Biol. Macromol., vol. 194, pp. 974-981, ene. 2022. DOI: https://doi.org/10.1016/j.ijbiomac.2021.11.155 DOI: https://doi.org/10.1016/j.ijbiomac.2021.11.155

S. Khizar et al., “Aminodextran Coated CoFe2O4 Nanoparticles for Combined Magnetic Resonance Imaging and Hyperthermia”, Nanomaterials, vol. 10, nro. 11, pp. 1-16, nov. 2020. DOI: https://doi.org/10.3390/nano10112182 DOI: https://doi.org/10.3390/nano10112182

J. Xu, L. Zhang, R. Shi y Y. Zhu, “Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis”, J. Mater. Chem. A, vol. 1, nro. 46, pp. 14766-14772, nov. 2013. DOI: https://doi.org/10.1039/C3TA13188B DOI: https://doi.org/10.1039/c3ta13188b

J. Xu, Y. Liu y S. Hsu, “Hydrogels Based on Schiff Base Linkages for Biomedical Applications”, Molecules, vol. 24, nro. 16, pp. 1-21, ene. 2019. DOI: https://doi.org/10.3390/molecules24163005 DOI: https://doi.org/10.3390/molecules24163005

H. Ozay, P. Ilgin y O. Ozay, “Novel hydrogels based on crosslinked chitosan with formyl-phosphazene using Schiff-base reaction”, Int. J. Polym. Mater. Polym. Biomater., vol. 70, nro. 4, pp. 246-255, mar. 2021. DOI: https://doi.org/10.1080/00914037.2019.1706514 DOI: https://doi.org/10.1080/00914037.2019.1706514

Y. Li, Z. Xia, Q. Yang, L. Wang y Y. Xing, “Review on g-C3N4-based S-scheme heterojunction photocatalysts”, J. Mater. Sci. Technol., vol. 125, pp. 128-144, oct. 2022. DOI: https://doi.org/10.1016/j.jmst.2022.02.035 DOI: https://doi.org/10.1016/j.jmst.2022.02.035

Q. Xu, S. Wageh, A. A. Al-Ghamdi y X. Li, “Design principle of S-scheme heterojunction photocatalyst”, J. Mater. Sci. Technol., vol. 124, pp. 171-173, oct. 2022. DOI: https://doi.org/10.1016/j.jmst.2022.02.016 DOI: https://doi.org/10.1016/j.jmst.2022.02.016

G. Chen et al., “S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction”, Journal of Environmental Sciences, vol. 140, pp. 103-112, jun. 2024. DOI: https://doi.org/10.1016/j.jes.2023.05.028 DOI: https://doi.org/10.1016/j.jes.2023.05.028

J. Wang et al., “Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation”, Applied Catalysis B: Environmental, vol. 209, pp. 285-294, jul. 2017. DOI: https://doi.org/10.1016/j.apcatb.2017.03.019 DOI: https://doi.org/10.1016/j.apcatb.2017.03.019

G. Liu, Z. Zhang, M. Lv, H. Wang, D. Chen y Y. Feng, “Photodegradation performance and transformation mechanisms of sulfamethoxazole by porous g-C3N4 modified with ammonia bicarbonate”, Sep. Purif. Technol., vol. 235, pp. 1-10, mar. 2020. DOI: https://doi.org/10.1016/j.seppur.2019.116172 DOI: https://doi.org/10.1016/j.seppur.2019.116172

G. Liu, M. Liao, Z. Zhang, H. Wang, D. Chen y Y. Feng, “Enhanced photodegradation performance of Rhodamine B with g-C3N4 modified by carbon nanotubes”, Sep. Purif. Technol., vol. 244, pp. 1-10, ago. 2020. DOI: https://doi.org/10.1016/j.seppur.2020.116618 DOI: https://doi.org/10.1016/j.seppur.2020.116618

J. Wang, Y. Chen, Y. Shen, S. Liu y Y. Zhang, “Coupling polymorphic nanostructured carbon nitrides into an isotype heterojunction with boosted photocatalytic H2 evolution”, Chem. Commun., vol. 53, nro. 20, pp. 2978-2981, mar. 2017. DOI: https://doi.org/10.1039/C7CC00356K DOI: https://doi.org/10.1039/C7CC00356K

S. Panneri et al., “Photoregenerable, Bifunctional Granules of Carbon-Doped g-C3N4 as Adsorptive Photocatalyst for the Efficient Removal of Tetracycline Antibiotic”, ACS Sustain. Chem. Eng., vol. 5, nro. 2, pp. 1610-1618, feb. 2017. DOI: https://doi.org/10.1021/acssuschemeng.6b02383 DOI: https://doi.org/10.1021/acssuschemeng.6b02383

X. Guo, J. Duan, C. Li, Z. Zhang y W. Wang, “Fabrication of g-C3N4/TiO2 photocatalysts with a special bilayer structure for visible light photocatalytic application”, Colloids Surf. Physicochem. Eng. Asp., vol. 599, pp. 1-10, ago. 2020. DOI: https://doi.org/10.1016/j.colsurfa.2020.124931 DOI: https://doi.org/10.1016/j.colsurfa.2020.124931

Cómo citar

IEEE

[1]
A. Corzo Lucioni, «Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli», Rev. Colomb. Quim., vol. 52, n.º 2, pp. 20–27, abr. 2024.

ACM

[1]
Corzo Lucioni, A., Alarcón Cavero, H., Montes de Oca Ávalos, J., Saire Saire, S., Canchari Chacón, S., Changanaqui Barrientos, K. y Revollar Casas, K. 2024. Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli. Revista Colombiana de Química. 52, 2 (abr. 2024), 20–27. DOI:https://doi.org/10.15446/rev.colomb.quim.v52n2.111340.

ACS

(1)
Corzo Lucioni, A.; Alarcón Cavero, H.; Montes de Oca Ávalos, J.; Saire Saire, S.; Canchari Chacón, S.; Changanaqui Barrientos, K.; Revollar Casas, K. Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli. Rev. Colomb. Quim. 2024, 52, 20-27.

APA

Corzo Lucioni, A., Alarcón Cavero, H., Montes de Oca Ávalos, J., Saire Saire, S., Canchari Chacón, S., Changanaqui Barrientos, K. y Revollar Casas, K. (2024). Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli. Revista Colombiana de Química, 52(2), 20–27. https://doi.org/10.15446/rev.colomb.quim.v52n2.111340

ABNT

CORZO LUCIONI, A.; ALARCÓN CAVERO, H.; MONTES DE OCA ÁVALOS, J.; SAIRE SAIRE, S.; CANCHARI CHACÓN, S.; CHANGANAQUI BARRIENTOS, K.; REVOLLAR CASAS, K. Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli. Revista Colombiana de Química, [S. l.], v. 52, n. 2, p. 20–27, 2024. DOI: 10.15446/rev.colomb.quim.v52n2.111340. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/111340. Acesso em: 19 ago. 2024.

Chicago

Corzo Lucioni, Alberto, Hugo Alarcón Cavero, Juan Montes de Oca Ávalos, Samuel Saire Saire, Silvia Canchari Chacón, Katherina Changanaqui Barrientos, y Katherine Revollar Casas. 2024. «Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli». Revista Colombiana De Química 52 (2):20-27. https://doi.org/10.15446/rev.colomb.quim.v52n2.111340.

Harvard

Corzo Lucioni, A., Alarcón Cavero, H., Montes de Oca Ávalos, J., Saire Saire, S., Canchari Chacón, S., Changanaqui Barrientos, K. y Revollar Casas, K. (2024) «Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli», Revista Colombiana de Química, 52(2), pp. 20–27. doi: 10.15446/rev.colomb.quim.v52n2.111340.

MLA

Corzo Lucioni, A., H. Alarcón Cavero, J. Montes de Oca Ávalos, S. Saire Saire, S. Canchari Chacón, K. Changanaqui Barrientos, y K. Revollar Casas. «Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli». Revista Colombiana de Química, vol. 52, n.º 2, abril de 2024, pp. 20-27, doi:10.15446/rev.colomb.quim.v52n2.111340.

Turabian

Corzo Lucioni, Alberto, Hugo Alarcón Cavero, Juan Montes de Oca Ávalos, Samuel Saire Saire, Silvia Canchari Chacón, Katherina Changanaqui Barrientos, y Katherine Revollar Casas. «Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli». Revista Colombiana de Química 52, no. 2 (abril 10, 2024): 20–27. Accedido agosto 19, 2024. https://revistas.unal.edu.co/index.php/rcolquim/article/view/111340.

Vancouver

1.
Corzo Lucioni A, Alarcón Cavero H, Montes de Oca Ávalos J, Saire Saire S, Canchari Chacón S, Changanaqui Barrientos K, Revollar Casas K. Nanocompósito basado en microesferas de quitosano/CF/CN como promisorio inactivador de Escherichia coli. Rev. Colomb. Quim. [Internet]. 10 de abril de 2024 [citado 19 de agosto de 2024];52(2):20-7. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/111340

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

271

Descargas

Los datos de descargas todavía no están disponibles.