Published

2024-04-10

Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico

Modeling and simulation of falling film photocatalytic reactors: use of computational fluid dynamics (CFD) for multiphase system analysis

Modelagem e simulação de reatores fotocatalíticos de filme descendente: uso da dinâmica de fluidos computacional (CFD) para análise de sistemas multifásicos

DOI:

https://doi.org/10.15446/rev.colomb.quim.v52n2.110351

Keywords:

fotocatálisis, CFD, reactor de película descendente, sistema multifase (es)
photocatalysis, CFD, falling film reactor, multiphase system (en)
fotocatálise, CFD, reator de filme descendente, sistema multifásico (pt)

Authors

  • Deyler Rafael Castilla Caballero Universidad Tecnológica de Bolívar. Cartagena, Colombia. https://orcid.org/0000-0001-7848-3127
  • Astrid del Rosario Medina Guerrero Universidad Tecnológica de Bolívar. Cartagena, Colombia.
  • Fiderman Machuca Martínez Universidad del Valle
  • José Ángel Colina Márquez Universidad de Cartagena

La dinámica computacional de fluidos (CFD) se perfila como una herramienta apropiada para el modelamiento de procesos fotocatalíticos heterogéneos, pues permite considerar simultáneamente los diferentes fenómenos físicos trascendentales de los procesos. En el presente estudio se empleó el software COMSOL Multiphysics para modelar el régimen de flujo y determinar la distribución de las partículas de catalizador en un reactor fotocatalítico de película descendente, hecho relevante para determinar la eficiencia del reactor. Las simulaciones del reactor fueron realizadas con el módulo de Mezclas de COMSOL, en un régimen de flujo turbulento empleando el enfoque de RANS. Se detectaron siete zonas definidas con un perfil particular de concentración de catalizador en toda el área de la película, para las cuales se estimó la absorción fotónica en el reactor con el modelo de seis flujos (SFM). De ello se obtuvo que existe una diferencia de más del 20% entre el mayor y el menor valor del promedio de la absorción fotónica en el área reactiva, con lo que se puede esperar que la variación en la degradación de los contaminantes en estas zonas oscile entre el 10 y el 20%, lo cual debe tenerse en cuenta para la aplicabilidad de la tecnología.

Computational fluid dynamics (CFD) is emerging as an appropriate tool for modeling heterogeneous photocatalytic processes, since it allows simultaneous consideration of the different physical phenomena involved in the processes. In the present study, COMSOL Multiphysics software was used to model the flow regime and to determine the distribution of catalyst particles in a falling film photocatalytic reactor, which is relevant to determine the reactor efficiency. The reactor simulations were performed with the COMSOL Mixture module in a turbulent flow regime using the RANS approach. Seven defined zones were detected having a particular catalyst-concentration profile over the entire film area, for which the photonic absorption in the reactor was estimated with the six-flux model (SFM). From this it was obtained that there is a difference of more than 20% between the highest and the lowest value of the average photonic absorption in the reactive area, so it can be expected that the variation in the degradation of pollutants in these zones ranges between 10 and 20%, which should be taken into account for the applicability of the technology.

A Dinâmica de Fluidos Computacional (CFD) surgiu como uma ferramenta adequada para modelar processos fotocatalíticos heterogêneos, pois permite que os diferentes fenômenos físicos dos processos sejam considerados simultaneamente. No presente estudo, o software COMSOL Multiphysics foi usado para modelar o regime de fluxo e determinar a distribuição de partículas de catalisador em um reator fotocatalítico de filme descendente, o que é relevante para determinar a eficiência do reator. As simulações do reator foram realizadas com o módulo COMSOL Mixtures, em um regime de fluxo turbulento usando a abordagem RANS. Sete zonas definidas com um perfil específico de concentração de catalisador foram detectadas em toda a área do filme, para as quais a absorção fotônica no reator foi estimada com o modelo de seis fluxos (SFM). A partir disso, verificou-se que há uma diferença de mais de 20% entre o valor mais alto e o mais baixo da absorção fotônica média na área reativa, de modo que a variação na degradação de poluentes nessas zonas pode variar entre 10 e 20%, o que deve ser levado em conta para a aplicabilidade da tecnologia.

References

A. Yusuf y G. Palmisano, “Three-dimensional CFD modelling of a photocatalytic parallel-channel microreactor”, Chem Eng Sci., vol. 229, nro. 16, pp. 116051, ene. 2021. DOI: https://doi.org/10.1016/j.ces.2020.116051 DOI: https://doi.org/10.1016/j.ces.2020.116051

I. Garrido, P. Flores, P. Hellín, N. Vela, S. Navarro y J. Fenoll, “Solar reclamation of agro-wastewater polluted with eight pesticides by heterogeneous photocatalysis using a modular facility. A case study”, Chemosphere, vol. 249, pp. 126156, jun. 2020. DOI: https://doi.org/10.1016/j.chemosphere.2020.126156 DOI: https://doi.org/10.1016/j.chemosphere.2020.126156

A. Yusuf, C. Garlisi, R. Peralta Muniz Moreira, G. Li Puma y G. Palmisano, “Multiphysics computational fluid dynamics (CFD) modelling of diclofenac amide removal by photocatalytic oxidation on Fe-TiO2/N-TiO2 thin films microreactor”, Chem Eng Sci., vol. 274, nro. 15, pp. 118662, jun. 2023. DOI: https://doi.org/10.1016/j.ces.2023.118662 DOI: https://doi.org/10.1016/j.ces.2023.118662

J.O.B. Lira, H.G. Riella, N. Padoin y C. Soares, “CFD + DoE optimization of a flat plate photocatalytic reactor applied to NOx abatement”, Chemical Engineering and Processing - Process Intensification, vol. 154, pp. 107998, ago. 2020. DOI: https://doi.org/10.1016/j.cep.2020.107998 DOI: https://doi.org/10.1016/j.cep.2020.107998

Y. Boyjoo, M. Ang y V. Pareek, “Some aspects of photocatalytic reactor modeling using computational fluid dynamics”, Chem Eng Sci., vol. 101, nro. 20, pp. 764–784, sep. 2013. DOI: https://doi.org/10.1016/j.ces.2013.06.035 DOI: https://doi.org/10.1016/j.ces.2013.06.035

O. Alvarado-Rolon, R. Natividad, J. Ramírez-García, J. Orozco-Velazco, J.A. Hernandez-Servin y A. Ramírez-Serrano, “Kinetic modelling of paracetamol degradation by photocatalysis: Incorporating the competition for photons by the organic molecule and the photocatalyst”, J Photochem Photobiol A Chem., vol. 412, nro. 1, pp. 113252, may. 2021. DOI: https://doi.org/10.1016/J.JPHOTOCHEM.2021.113252 DOI: https://doi.org/10.1016/j.jphotochem.2021.113252

D. Castilla-Caballero, F. Machuca-Martínez, C. Bustillo-Lecompte y J. Colina-Márquez, “Photocatalytic degradation of commercial acetaminophen: Evaluation, modeling, and scaling-up of photoreactors”, Catalysts, vol. 8, nro. 5, pp. 1-15, 2018. DOI: https://doi.org/10.3390/catal8050179 DOI: https://doi.org/10.3390/catal8050179

I. Grčić, L. Radetić, K. Miklec, I. Presečki, K. Leskovar, H. Meaški, M. Čizmić y I. Brnardić, “Solar photocatalysis application in UWWTP outlets - simulations based on predictive models in flat-plate reactors and pollutant degradation studies with in silico toxicity assessment”, J Hazard Mater., vol. 461, nro. 5, pp. 132589, ene. 2024. DOI: https://doi.org/10.1016/J.JHAZMAT.2023.132589 DOI: https://doi.org/10.1016/j.jhazmat.2023.132589

M.A. Mueses, J. Colina-Márquez, F. Machuca-Martínez y G. Li Puma, “Recent advances on modeling of solar heterogeneous photocatalytic reactors applied for degradation of pharmaceuticals and emerging organic contaminants in water”, Curr Opin Green Sustain Chem., vol. 30, p. 100486, ago. 2021. DOI: https://doi.org/10.1016/J.COGSC.2021.100486 DOI: https://doi.org/10.1016/j.cogsc.2021.100486

M. Asgharian, B. Khoshandam, M. Mehdipourghazi y N. Keramati, “Photocatalytic degradation of tetracycline in a stirred tank: computational fluid dynamic modeling and data validation”, Reaction Kinetics, Mechanisms and Catalysis., vol. 134, pp. 553–568, sep. 2021. DOI: https://doi.org/10.1007/s11144-021-02062-0 DOI: https://doi.org/10.1007/s11144-021-02062-0

J. Colina-Marquez, D. Castilla-Caballero y F. Machuca-Martinez, “Modeling of a falling-film photocatalytic reactor: Fluid dynamics for turbulent regime”, Appl Math Model, vol. 40, nros. 7–8, pp. 4812–4821, abr. 2016. DOI: https://doi.org/10.1016/j.apm.2015.12.007

S.M. Fouad, Y.M.S. El-Shazly, M.A. Alyoubi, S.A. Nosier y M. H. Abdel-Aziz, “Enhanced photocatalytic degradation of cationic dyes using slurry of anatase titania in a falling film reactor”, Case Studies in Chemical and Environmental Engineering, vol. 8, pp. 100518, dic. 2023. DOI: https://doi.org/10.1016/J.CSCEE.2023.100518 DOI: https://doi.org/10.1016/j.cscee.2023.100518

K. Kouvelis, A.A. Ioannidi, A. Petala, M. Souliotis y Z. Frontistis, “Photocatalytic Degradation of Losartan with Bismuth Oxychloride: Batch and Pilot Scale Demonstration”, Catalysts, vol. 13, nro. 8, pp. 1175, 2023. DOI: https://doi.org/10.3390/catal13081175 DOI: https://doi.org/10.3390/catal13081175

F. de J. Silerio-Vázquez, C.M. Núñez-Núñez, M.T. Alarcón-Herrera y J.B. Proal-Nájera, “Comparative Efficiencies for Phenol Degradation on Solar Heterogeneous Photocatalytic Reactors: Flat Plate and Compound Parabolic Collector”, Catalysts, vol. 12, nro. 6, pp. 575, 2022. DOI: https://doi.org/10.3390/CATAL12060575 DOI: https://doi.org/10.3390/catal12060575

F. Biglar, A. Talaiekhozani, F. Aminsharei, J. Park, A. Barghi y S. Rezania, “Application of zno-nd nano-photocatalyst for the reactive red 198 dye decolorization in the falling-film photocatalytic reactor”, Toxics, vol. 9, pp. 254, 2021. DOI: https://doi.org/10.3390/toxics9100254 DOI: https://doi.org/10.3390/toxics9100254

Z.Y. Shnain, M. Fadhil Abid, K.A. Sukkar y K.A. Sukkar, “Photodegradation of mefenamic acid from wastewater in a continuous flow solar falling film reactor”, Desalination and Water Treatment, vol. 2010, pp. 22-30, ene. 2021. DOI: https://doi.org/10.5004/dwt.2021.26581 DOI: https://doi.org/10.5004/dwt.2021.26581

M.A. Mueses, F. Machuca-Martinez y G. Li Puma, “Effective quantum yield and reaction rate model for evaluation of photocatalytic degradation of water contaminants in heterogeneous pilot-scale solar photoreactors”, Chemical Engineering Journal, vol. 215–216, nro. 15, pp. 937–947, ene. 2013. DOI: https://doi.org/10.1016/j.cej.2012.11.076 DOI: https://doi.org/10.1016/j.cej.2012.11.076

G. Li Puma, J. Khor y A. Brucato, “Modeling of an annular photocatalytic reactor for water purification: oxidation of pesticides”, Environ Sci Technol., vol. 38, nro. 13, pp. 3737–3745, may. 2004. DOI: https://doi.org/10.1021/es0301020 DOI: https://doi.org/10.1021/es0301020

J. Ling, P. V. Skudarnov, C.X. Lin y M. A. Ebadian, “Numerical investigations of liquid–solid slurry flows in a fully developed turbulent flow region”, Int J Heat Fluid Flow, vol. 24, nro.: 3, pp. 389–398, jun. 2003. DOI: https://doi.org/10.1016/S0142-727X(03)00018-3 DOI: https://doi.org/10.1016/S0142-727X(03)00018-3

N. Qi, H. Zhang, B. Jin y K. Zhang, “CFD modelling of hydrodynamics and degradation kinetics in an annular slurry photocatalytic reactor for wastewater treatment”, Chemical Engineering Journal, vol. 172, nro. 1, pp. 84–95, ago. 2011. DOI: https://doi.org/10.1016/J.CEJ.2011.05.068 DOI: https://doi.org/10.1016/j.cej.2011.05.068

X. Xu, S. Wang, C. Gong y Q. Yang, “Improvement of the bubble separation through eccentric planar cyclones: Experiments and CFD simulations”, Chemical Engineering Research and Design, vol. 198, pp. 208–220, oct. 2023. DOI: https://doi.org/10.1016/J.CHERD.2023.06.047 DOI: https://doi.org/10.1016/j.cherd.2023.06.047

R. Silva, C. Cotas, F.A.P. Garcia, P.M. Faia y M.G. Rasteiro, “Particle Distribution Studies in Highly Concentrated Solid-liquid Flows in Pipe Using the Mixture Model”, Procedia Eng. vol. 102, pp. 1016–1025, 2015. DOI: https://doi.org/10.1016/J.PROENG.2015.01.224 DOI: https://doi.org/10.1016/j.proeng.2015.01.224

“Turbulence Modeling in Mixture Models”, 2023. [En línea]. Disponible: https://doc.comsol.com/5.5/doc/com.comsol.hel p.cfd/cfd_ug_fluidflow_multi.09.109.html [Último acceso: 2/11/2023).

A. Brucato, C. Grisafi, G. Montante, G. Rizzuti y G. Vella, “Estimating radiant fields in flat heterogeneous photoreactors by the six-flux model”, AIChE Journal, vol. 52, pp. 3882–3890, sep. 2006. DOI: https://doi.org/10.1002/aic.10984 DOI: https://doi.org/10.1002/aic.10984

J. Colina-Márquez, F. Machuca-Martínez y G. Li Puma, “Radiation absorption and optimization of solar photocatalytic reactors for environmental applications”, Environ Sci Technol., vol. 44, nro. 13, pp. 5112–20, 2010. DOI: https://doi.org/10.1021/es100130h DOI: https://doi.org/10.1021/es100130h

J. Colina-Márquez, F. Machuca-Martínez y G. Li Puma, “Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field”, Environ Sci Technol., vol. 43, nro. 23, pp. 8953–60. DOI: https://doi.org/10.1021/es902004b DOI: https://doi.org/10.1021/es902004b

J. Colina-Márquez, F. Machuca-Martínez y G. Puma, “Modeling the Photocatalytic Mineralization in Water of Commercial Formulation of Estrogens 17-β Estradiol (E2) and Nomegestrol Acetate in Contraceptive Pills in a Solar Powered Compound Parabolic Collector”, Molecules, vol. 20, nro. 7, pp. 13354–13373, 2015. DOI: https://doi.org/10.3390/molecules200713354 DOI: https://doi.org/10.3390/molecules200713354

J. Colina-Marquez, D. Castilla-Caballero y F. Machuca-Martinez, “Modeling of a falling-film photocatalytic reactor: Fluid dynamics for turbulent regime”, Appl Math Model., vol. 40, nro. 7–8, pp. 4812-4821, abr. 2015. DOI: https://doi.org/10.1016/j.apm.2015.12.007 DOI: https://doi.org/10.1016/j.apm.2015.12.007

G. Karimi y M. Kawaji, “An experimental study of freely falling films in a vertical tube”, Chem Eng Sci., vol. 53, nro. 20, pp. 3501–3512, 1998. DOI: https://doi.org/10.1016/S0009-2509(98)00159-6 DOI: https://doi.org/10.1016/S0009-2509(98)00159-6

Z. Wei, Y. Wang, Z. Wu, X. Peng, G. Yu y F. Wang, “Flow Characteristics of the Vertical Turbulent Falling Film at High Reynolds Numbers”, Ind Eng Chem Res., vol. 60, nro. 1, pp. 678–696, 2021. DOI: https://doi.org/10.1021/acs.iecr.0c03557 DOI: https://doi.org/10.1021/acs.iecr.0c03557

F.P. Incropera y D.P. DeWitt, Fundamentos de transferencia de calor, Pearson Educación, 1999.

A.M. Horst, Z. Ji y P.A. Holden, “Nanoparticle dispersion in environmentally relevant culture media: a TiO2 case study and considerations for a general approach”, Journal of Nanoparticle Research, vol. 14, pp. 1014, jul. 2012. DOI: https://doi.org/10.1007/s11051-012-1014-2 DOI: https://doi.org/10.1007/s11051-012-1014-2

R. Tsekov, E. Evstatieva, K.W. Stockelhuber y P.G. Smirniotis, “Stability of TiO2 suspensions in reactors for degradation of toxic pollutants”, Progr Colloid Polym Sci., vol. 126, pp. 117–120, nov. 2004. DOI: https://doi.org/10.1007/b94005 DOI: https://doi.org/10.1007/b94005

Comsol, "Comsol User’s Guide-CFD Module". V. 5.2, 2015.

H.K. Versteeg y W. Malalasekera, An introduction to Computational Fluid Dynamics, Prentice Hall, 1995.

D. Green y R. Perry, Perry’s Chemical Engineers’ Handbook, Eighth Edition, McGraw-Hill Education, 2007.

R.B. Bird, W.E. Stewart y E. N. Lightfoot, Transport Phenomena, Wiley, 2007.

L. Hurtado, R. Natividad, E. Torres-García, J. Farias y G. Li Puma, “Correlating the photocatalytic activity and the optical properties of LiVMoO6 photocatalyst under the UV and the visible region of the solar radiation spectrum”, Chemical Engineering Journal, vol. 262, pp. 1284–1291, 2015. DOI: https://doi.org/10.1016/j.cej.2014.10.052. DOI: https://doi.org/10.1016/j.cej.2014.10.052

B. Bayarri, J. Giménez, M.I. Maldonado, S. Malato y S. Esplugas, “2,4-Dichlorophenol degradation by means of heterogeneous photocatalysis. Comparison between laboratory and pilot plant performance”, Chemical Engineering Journal, vol. 232, pp. 405–417, oct. 2013. DOI: https://doi.org/10.1016/j.cej.2013.07.102. DOI: https://doi.org/10.1016/j.cej.2013.07.102

How to Cite

IEEE

[1]
D. R. Castilla Caballero, A. del R. Medina Guerrero, F. Machuca Martínez, and J. Ángel Colina Márquez, “Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico”, Rev. Colomb. Quim., vol. 52, no. 2, pp. 43–53, Apr. 2024.

ACM

[1]
Castilla Caballero, D.R., Medina Guerrero, A. del R., Machuca Martínez, F. and Colina Márquez, J. Ángel 2024. Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico. Revista Colombiana de Química. 52, 2 (Apr. 2024), 43–53. DOI:https://doi.org/10.15446/rev.colomb.quim.v52n2.110351.

ACS

(1)
Castilla Caballero, D. R.; Medina Guerrero, A. del R.; Machuca Martínez, F.; Colina Márquez, J. Ángel. Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico. Rev. Colomb. Quim. 2024, 52, 43-53.

APA

Castilla Caballero, D. R., Medina Guerrero, A. del R., Machuca Martínez, F. and Colina Márquez, J. Ángel. (2024). Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico. Revista Colombiana de Química, 52(2), 43–53. https://doi.org/10.15446/rev.colomb.quim.v52n2.110351

ABNT

CASTILLA CABALLERO, D. R.; MEDINA GUERRERO, A. del R.; MACHUCA MARTÍNEZ, F.; COLINA MÁRQUEZ, J. Ángel. Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico. Revista Colombiana de Química, [S. l.], v. 52, n. 2, p. 43–53, 2024. DOI: 10.15446/rev.colomb.quim.v52n2.110351. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/110351. Acesso em: 19 jul. 2024.

Chicago

Castilla Caballero, Deyler Rafael, Astrid del Rosario Medina Guerrero, Fiderman Machuca Martínez, and José Ángel Colina Márquez. 2024. “Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico”. Revista Colombiana De Química 52 (2):43-53. https://doi.org/10.15446/rev.colomb.quim.v52n2.110351.

Harvard

Castilla Caballero, D. R., Medina Guerrero, A. del R., Machuca Martínez, F. and Colina Márquez, J. Ángel (2024) “Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico”, Revista Colombiana de Química, 52(2), pp. 43–53. doi: 10.15446/rev.colomb.quim.v52n2.110351.

MLA

Castilla Caballero, D. R., A. del R. Medina Guerrero, F. Machuca Martínez, and J. Ángel Colina Márquez. “Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico”. Revista Colombiana de Química, vol. 52, no. 2, Apr. 2024, pp. 43-53, doi:10.15446/rev.colomb.quim.v52n2.110351.

Turabian

Castilla Caballero, Deyler Rafael, Astrid del Rosario Medina Guerrero, Fiderman Machuca Martínez, and José Ángel Colina Márquez. “Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico”. Revista Colombiana de Química 52, no. 2 (April 10, 2024): 43–53. Accessed July 19, 2024. https://revistas.unal.edu.co/index.php/rcolquim/article/view/110351.

Vancouver

1.
Castilla Caballero DR, Medina Guerrero A del R, Machuca Martínez F, Colina Márquez J Ángel. Modelamiento y simulación de reactores fotocatalíticos de película descendente: uso de la dinámica computacional de fluidos (CFD) para análisis del sistema multifásico. Rev. Colomb. Quim. [Internet]. 2024 Apr. 10 [cited 2024 Jul. 19];52(2):43-5. Available from: https://revistas.unal.edu.co/index.php/rcolquim/article/view/110351

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

332

Downloads

Download data is not yet available.