El problema del realismo matemático: una posible respuesta desde Thomas Kuhn
The Problem of Mathematical Realism: A Possible Answer from Thomas Kuhn
Palabras clave:
Kuhn, Descubrimiento , Idealismo, Invención, Matemáticas, Realismo (es)Kuhn, Discovery, Idealism, Invention, Mathematics, Realism (en)
Descargas
The problem of the mathematical realism can be seen from an ontological point of view and, at the same time, from an epistemological standpoint. Thus, as Stewart Shapiro expresses it, there are four schemes that seem to be exclusive between them (that is, four possible combinations between realism and idealism, that are either epistemological or ontological). On the other hand, the notion of ‘discovery’ espoused by Thomas Kuhn in chapter VI of The Structure of Scientific Revolutions seems to imply that it is impossible to determine the limit between a discovery and an invention; furthermore, from a historic standpoint, any scientific object seems to oscillate from one state to other. Thus, this paper intends to show how Kuhn’s view regarding the ‘discoveries’ can turn into a possible solution to the problem of mathematical realism; always approaches from a historical standpoint and that way the problem of the mathematical realism has another direction.
Referencias
Benacerraf, P.“Mathematical Truth”. En: Journal of Philosophy, 70, 1973. 661-679.
Bird, A. “Naturalizing Kuhn”. En: Proceedings of the Aristotelian Society, 105, 2004. 1: 99-117.
Bochner, S. “Revolutions in Physics and Crises in Mathematics”. En: Science, 1963. 141: 408-411.
Corfield, D. Toward a Philosophy of Real Mathematics. Cambridge: University Press, 2003.
Gillies, D. “The Fregean revolution in Logic”. En: Revolutions in Mathematics, Oxford: OUP, 1995.
Green, D.R. “The historical development of complex numbers”. En: The Mathematical Gazette 60, 412, 1976. 99-107.
Kuhn, T. S. La estructura de las revoluciones científicas. (Trad de A. Contín). Bogotá: FCE, 1998.
Kuhn, T. S. “¿Qué son las revoluciones científicas?”. En: El camino desde la estructura. (Trad. A. Beltrán & J. Romo). Buenos Aires: Paidós, 2002.
Maddy, P. “The Roots of the Contemporary Platonism”. En: The Journal of Symbolic Logic 54 (1989): 1121-1144.
Mc Lane, S. “The Mathematical Network”. En: Mathematics. Forward Function, New York, 1986. 409-456.
Shapiro, S. “Mathematics and Reality”. En: Philosophy of Science 50, 4, 1984. 523-548.
Shapiro, S. Thinking about mathematics. The philosophy of mathematics. Oxford: OUP, 2000.
Shapiro, S. The Oxford handbook of Philosophy of Mathematics and Logic. New York: OUP, 2005.
Zalamea, F. Filosofía sintética de las matemáticas contemporáneas. Inédito.