Published

2024-05-29

Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency

Determinación del efecto de la temperatura superficial de los módulos fotovoltaicos en su eficiencia de generación

DOI:

https://doi.org/10.15446/ing.investig.106383

Keywords:

solar PV-T module, PV surface temperature, PV efficiency (en)
módulo solar PV-T, temperatura superficial PV, eficiencia PV (es)

Downloads

Authors

It is imperative to consider the environmental impact of energy production and its cost in deciding how to meet future energy needs. In this regard, it is possible to harness the power of the sun by using photovoltaic (PV) cells. However, when the temperature of a PV cell increases, its generation efficiency is negatively affected. The open-circuit voltage of PV modules is the most sensitive parameter to temperature changes. As the temperature rises, this parameter decreases, and the short-circuit current increases. The circuit's resistance also rises as the electrons’ speed is reduced. Temperature also affects the lifespan of PV cells, increasing the rate of thermal decay in their materials. On the other hand, when solar radiation is absorbed at lower temperatures, the system’s efficiency, power capacity, and useful life increase. PV module surface temperatures can be reduced in a variety of ways, e.g., the surface can be cooled using water. This work studied hybrid PV-thermal modules under the climate conditions of the Hatay province (Turkey) in order to assess the effect of water cooling on their generation efficiency. The results allow stating that up to 52.6% more electricity can be generated by cooling the module's surface. Additionally, it was found that, in order for PV modules to perform efficiently in Hatay's climate, they must operate at a maximum surface temperature of 55 °C.

Es imperativo considerar el impacto ambiental de la producción de energía y su costo al decidir cómo satisfacer las necesidades energéticas futuras. A este respecto, es posible aprovechar el poder del sol utilizando células fotovoltaicas (PV). Sin embargo, cuando la temperatura de una célula PV aumenta, su eficiencia de generación se ve negativamente afectada. El voltaje en circuito abierto de los módulos PV es el parámetro más sensible a los cambios de temperatura. A medida que la temperatura aumenta, este parámetro disminuye, y la corriente de cortocircuito aumenta. La resistencia del circuito también se eleva a medida que la velocidad de los electrones se reduce. La temperatura también afecta la vida útil de las células PV, incrementando la tasa de degradación térmica en sus materiales. Por otro lado, cuando la radiación solar se absorbe a temperaturas más bajas, la eficiencia del sistema, la capacidad de potencia y la vida útil aumentan. Las temperaturas superficiales de los módulos PV pueden reducirse de varias maneras, e.g., la superficie puede enfriarse utilizando agua. Este trabajo estudió módulos híbridos PV-térmicos bajo las condiciones climáticas de la provincia de Hatay (Turquía) con el fin de evaluar el efecto del enfriamiento con agua en su eficiencia de generación. Los resultados permiten afirmar que se puede generar hasta un 52.6 % más de electricidad enfriando la superficie del módulo. Además, se encontró que, para que los módulos PV funcionen eficientemente en el clima de Hatay, deben operar a una temperatura superficial máxima de 55 °C.

References

Abu-Rahmeh, T. M. (2017). Efficiency of photovoltaic modules using different cooling methods: A comparative study. Jour-nal of Power and Energy Engineering, 5, 32-45. https://doi.org/10.4236/jpee.2017.59003 DOI: https://doi.org/10.4236/jpee.2017.59003

Agyekum, E. B, PraveenKumar, S., Alwan, N. T., Velkin, V. I., and Shcheklein, S. E. (2021). Effect of dual surface cooling of solar photovoltaic panel on the efficiency of the module: experimental investigation. Heliyon, 7(9), e07920, https://doi.org/10.1016/j.heliyon.2021.e07920 DOI: https://doi.org/10.1016/j.heliyon.2021.e07920

Akbarzadeh, A., and Wadowski, T. (1996). Heat-pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Applied Thermal Engineering, 16(1), 81-87. https://doi.org/10.1016/1359-4311(95)00012-3 DOI: https://doi.org/10.1016/1359-4311(95)00012-3

Andreev, V. M., Grilikhes, V. A., and Rumyantev V. D. (1997). Photovoltaic conversion of concentrated sunlight. Wiley.

Dubey, S., Sarvaiya, J. N., and Seshadri, B. (2013). Tempera-ture dependent photovoltaic (PV) efficiency and its effect on PV production in the world: A review. Energy Procedia, 33, 311-321. http://doi.org/10.1016/j.egypro.2013.05.072 DOI: https://doi.org/10.1016/j.egypro.2013.05.072

Govardhanan, M. S., Kumaraguruparan, G., Kameswari, M., Saravanan, R., Vivar, M., and Srithar, K. (2020). Photovoltaic module with uniform water flow on top surface. International Journal of Photoenergy, 2020, 9. https://doi.org/10.1155/2020/8473253 DOI: https://doi.org/10.1155/2020/8473253

Gül, M., and Akyüz, E. (2019). Performance investigation of a hybrid photovoltaic-thermal (PV/T) system. Journal of Balıkesir University Institute of Science and Technology, 21(1), 444-458. http://doi.org/10.25092/baunfbed.548728 DOI: https://doi.org/10.25092/baunfbed.548728

Haidara, Z. A., Orfib, J., and Kaneesamkandi, Z. (2018). Exper-imental investigation of evaporative cooling for enhancing photovoltaic panels efficiency. Results in Physics, 11, 690-697 https://doi.org/10.1016/j.rinp.2018.10.016 DOI: https://doi.org/10.1016/j.rinp.2018.10.016

Luboń, W., Pełka, G., Janowski, M., Pająk, L., Stefaniuk, M., Kotyza, J., and Reczek, P. (2020). Assessing the impact of water cooling on PV modules efficiency. Energies, 13(10), 2414. https://doi.org/10.3390/en13102414 DOI: https://doi.org/10.3390/en13102414

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., and Allen, M. R. (2009). Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 458, 1158-1163. http://doi.org/10.1038/nature08017 DOI: https://doi.org/10.1038/nature08017

Peng, Z., Herfatmanesh, M. R., and Liu, Y. (2017). Cooled solar PV panels for output energy efficiency optimisation. Energy Conversion and Management, 150, 949-955. https://doi.org/10.1016/j.enconman.2017.07.007 DOI: https://doi.org/10.1016/j.enconman.2017.07.007

Radziemska, E. (2003). The effect of temperature on the power drop in crystalline silicon solar cells. Renewable Energy, 28, 1-12. https://doi.org/10.1016/S0960-1481(02)00015-0 DOI: https://doi.org/10.1016/S0960-1481(02)00015-0

Rawat, P., and Dhiran, T. S. (2017). Comparative analysis of solar photovoltaic thermal (PVT) water and solar photovolta-ic thermal (PVT) air systems. International Journal of Civil, Mechanical and Energy Science, 3(1), 8-12. https://www.researchgate.net/publication/315657756_Comparative_Analysis_of_Solar_Photovoltaic_Thermal_PVT_Water_and_Solar_Photovoltaic_Thermal_PVT_Air_Systems

Shalaby, S. M., Elfakharany, M. K., Moharram, B. M., and Abosheiasha, H. F. (2022). Experimental study on the perfor-mance of PV with water cooling. Energy Reports, 8(Supp. 1), 957-961. https://doi.org/10.1016/j.egyr.2021.11.155 DOI: https://doi.org/10.1016/j.egyr.2021.11.155

Shukla, A., Kanta, K., Sharmaa, S., and Biwoleb, P. H. (2017). Cooling methodologies of photovoltaic module for enhanc-ing electrical efficiency: A review. Solar Energy Materials & Solar Cells, 160, 275-286. https://doi.org/10.1016/j.solmat.2016.10.047. DOI: https://doi.org/10.1016/j.solmat.2016.10.047

Solimpeks (n.d.) Product Catalogue. https://solimpeks.com.tr/wp-content/uploads/14-powerwolt-hibrit.pdf

Teo, H. G., Lee, P. S., and Hawlader, M. N. A. (2012). An active cooling system for photovoltaic modules. Applied Energy, 90, 309-315. https://doi.org/10.1016/j.apenergy.2011.01.017 DOI: https://doi.org/10.1016/j.apenergy.2011.01.017

Tiwari, A., Sodha, M. S., Chandra, A., and Joshi, J. C. (2006). Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Solar Energy Mate-rials & Solar Cells, 90(2), 175-89. https://doi.org/10.1016/j.solmat.2005.03.002 DOI: https://doi.org/10.1016/j.solmat.2005.03.002

Wang, G., Chao, Y., and Chen, Z. (2021). Promoting devel-opments of hydrogen powered vehicle and solar PV hydro-gen production in China: A study based on evolutionary game theory method. Energy, 237, 121649. https://doi.org/10.1016/j.energy.2021.121649 DOI: https://doi.org/10.1016/j.energy.2021.121649

Wang, G., Zhang, Z., and Chen, Z. (2023). Design and perfor-mance evaluation of a novel CPV-T system using nano-fluid spectrum filter and with high solar concentrating uniformity. Energy, 267, 126616. https://doi.org/10.1016/j.energy.2023.126616 DOI: https://doi.org/10.1016/j.energy.2023.126616

Zanlorenzi, G., Szejka, A. L., and Canciglieri, O. (2018). Hybrid photovoltaic module for efficiency improvement through an automatic water cooling system: A prototype case study. Journal of Cleaner Production, 196, 535-546. https://doi.org/10.1016/j.jclepro.2018.06.065 DOI: https://doi.org/10.1016/j.jclepro.2018.06.065

Zubeer, S. A., and Ali, O. M. (2022). Experimental and numeri-cal study of low concentration and water-cooling effect on PV module performance. Case Studies in Thermal Engineer-ing, 34, 102007. https://doi.org/10.1016/j.csite.2022.102007 DOI: https://doi.org/10.1016/j.csite.2022.102007

How to Cite

APA

Karaca, C. and Yaver, S. (2024). Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency. Ingeniería e Investigación, 44(2), e106383. https://doi.org/10.15446/ing.investig.106383

ACM

[1]
Karaca, C. and Yaver, S. 2024. Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency. Ingeniería e Investigación. 44, 2 (May 2024), e106383. DOI:https://doi.org/10.15446/ing.investig.106383.

ACS

(1)
Karaca, C.; Yaver, S. Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency. Ing. Inv. 2024, 44, e106383.

ABNT

KARACA, C.; YAVER, S. Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency. Ingeniería e Investigación, [S. l.], v. 44, n. 2, p. e106383, 2024. DOI: 10.15446/ing.investig.106383. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/106383. Acesso em: 10 aug. 2024.

Chicago

Karaca, Cengiz, and Seren Yaver. 2024. “Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency”. Ingeniería E Investigación 44 (2):e106383. https://doi.org/10.15446/ing.investig.106383.

Harvard

Karaca, C. and Yaver, S. (2024) “Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency”, Ingeniería e Investigación, 44(2), p. e106383. doi: 10.15446/ing.investig.106383.

IEEE

[1]
C. Karaca and S. Yaver, “Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency”, Ing. Inv., vol. 44, no. 2, p. e106383, May 2024.

MLA

Karaca, C., and S. Yaver. “Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency”. Ingeniería e Investigación, vol. 44, no. 2, May 2024, p. e106383, doi:10.15446/ing.investig.106383.

Turabian

Karaca, Cengiz, and Seren Yaver. “Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency”. Ingeniería e Investigación 44, no. 2 (May 29, 2024): e106383. Accessed August 10, 2024. https://revistas.unal.edu.co/index.php/ingeinv/article/view/106383.

Vancouver

1.
Karaca C, Yaver S. Determining the Effect of Photovoltaic Module Surface Temperature on Generation Efficiency. Ing. Inv. [Internet]. 2024 May 29 [cited 2024 Aug. 10];44(2):e106383. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/106383

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

205

Downloads

Download data is not yet available.