Published

2007-01-01

Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways

Conversión hidrotérmica subcrítica de residuos orgánicos y biomasa. Mecanismos de reacción

DOI:

https://doi.org/10.15446/ing.investig.v27n1.14777

Keywords:

hydrothermal process, biomass, biocrude, waste, reaction pathway (en)
procesos hidrotérmicos, biomasa, biocrudo, residuos, mecanismos de reacción (es)

Authors

  • Alejandro Amadeus Castro Vega Universidad Nacional de Colombia
  • Luis Ignacio Rodríguez Varela Universidad Nacional de Colombia
  • José de Jesús Díaz Velásquez Universidad Nacional de Colombia

Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requires previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis) is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters) present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary trajectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.

La conversión hidrotérmica es un procedimiento que emula el proceso natural de conversión de la materia orgánica en un biocrudo con propiedades físico-químicas similares a las del petróleo. La transformación artificial de biomasa requiere conocer previamente las rutas de reacción y productos prevalentes. En la conversión de celulosa, el principal componente de la biomasa, se presenta despolimerización por hidrólisis y se obtienen oligosacáridos, los cuales presentan deshidratación y condensación retro-aldol, para transformarse en furfurales y ácidos carboxílicos. Otros componentes de la biomasa como lignina, proteínas y ésteres grasos, presentan rutas de reacción en las que coexisten la hidrólisis y la pirólisis. Dada la presencia de carbohidratos en la biomasa, los principales productos de su conversión hidrotérmica subcrítica y de sus residuos serán análogos a los que presenta la celulosa. Dichas sustancias tienen un valor agregado que supera considerablemente los costos de adquisición de la materia prima. Al representar en un gráfico las relaciones molares O/C, H/C de los principales productos de conversión hidrotérmica de biomasa reportados en la literatura, se evidencia que la trayectoria de evolución para los productos de conversión hacia biocrudos se traslapa con la evolución geológica de los combustibles fósiles.

References

Annee, J. and Ruyter H., Process for producing hydrocarbon-containing liquids from biomass., Patente europea EP0204354, Oficina Europea de Patentes, Diciembre 10 de 1986, Asignada a SHELL Internationale Maastschappij B.V., 1986.

Antal, M., Carlsson, M. and Xu, X., Mechanism and kinetics of the acid-catalyzed dehydration of 1- and 2-propanol in hot compressed liquid water., Industrial and Engineering Chemistry Research, Vol. 37, No. 10, 1998, pp. 3820-3829. DOI: https://doi.org/10.1021/ie980204c

Antal, M., Allen, S., Schulman, D., Xu, X. and Divilio, R., Biomass gasification in supercritical water., Industrial and Engineering Chemical Research, Vol. 39, 2000, pp. 4040-4053. DOI: https://doi.org/10.1021/ie0003436

Bakr, M., Akiyama, M. and Sanada, Y., ESR assessment of kerogen maturation and its relation with petroleum genesis., Organic Geochemistry, Vol. 15, 1990, pp. 595-599. DOI: https://doi.org/10.1016/0146-6380(90)90104-8

Bart, T., Abbott, G. and Pedersen, K., Aqueous thermal conversion of biomass to hydrocarbons in the fluid fuel range., Reporte final del contrato JOR3-CT97-0176 (Diciembre 1 de 1997 - noviembre 31 de 2000), Programa de energía no nuclear Joule III, Comisión Europea-Statoil, 2000.

Bicker, M., Kaiser, D., Ott, L. and Vogel, H., Dehydration of d-fructose to hydroxymethylfurfural in sub- and supercritical fluids., Journal of supercritical fluids, Vol. 36, 2005, pp. 118-126. DOI: https://doi.org/10.1016/j.supflu.2005.04.004

Bobleter, O., Hydrolysis of Cellulose in Dilute Sulfuric Acid and Under Hydrothermal Conditions., Journal of Carbohydrate, Chemistry, Vol. 5, 1986, pp. 387-399. DOI: https://doi.org/10.1080/07328308608058843

Boukis, N., Boukis, N., Diem, V., Dinjus, E., Galla, U. and Kruse, A., Advances with the process of biomass gasification in supercritical water., Institut für Technische Chemie CPV, Forschungzentrum Karlsruhe, Alemania, 2004.

Braverman, J., Introducción a la bioquímica de los alimentos., 3º Ed., Ediciones Omega, Barcelona, España, 1980, pp. 354.

Brucker, E., Iniciación Botánica., Colección de iniciaciones científicas, París, Editorial E., Brucker, 1912.

Calvo, L. and Vallejo, D., Formation of organic acids during the hydrolysis and oxidation of several wastes in sub and supercritical water., Industrial and Engineering Chemistry Research, Vol. 41, 2002, pp. 6503- 6509. DOI: https://doi.org/10.1021/ie020441m

Campbell, G. and Meluch, W., Polyurethane foam recycling superheated steam hydrolysis., Environmental Science & Technology, Vol. 10, No. 2, 1976, pp. 182-185. DOI: https://doi.org/10.1021/es60113a008

Curry, D. and Simpler, T., Isoprenoid constituents in kerogens as a function of depositional environment and catagenesis., Organic Chemistry, Vol. 13, No. 4-6, 1988, pp. 995-1001. DOI: https://doi.org/10.1016/0146-6380(88)90281-1

Demirbaş, A., Mechanism of liquefaction and pyrolysis reaction of biomass., Energy conversion & Management, No. 41, 2000, pp. 633-646. DOI: https://doi.org/10.1016/S0196-8904(99)00130-2

Demirbaş, A., Biomass to methanol via pyrolysis process., Energy conversion & Management, No. 42, 2001, pp. 1349-1356. DOI: https://doi.org/10.1016/S0196-8904(00)00126-6

Franck, E., Fluids at high pressures and temperature., Journal of Chemical Thermodynamic, Vol. 19, 1987, pp.225-242. DOI: https://doi.org/10.1016/0021-9614(87)90130-3

González, G., Salvadó, J., Montané, D., Reactions of vanillic acid in sub- and supercritical water., Journal of Supercritical Fluids, Vol. 31, 2004, pp.57-66. DOI: https://doi.org/10.1016/j.supflu.2003.09.015

Goudriaan, F. and Peferoen, D., Liquid fuels from biomass via a hydrothermal process., Chemical Engineering Science, Vol. 45, No. 8, 1990, pp. 2729-2734. DOI: https://doi.org/10.1016/0009-2509(90)80164-A

Hoering, T., Thermal reactions of kerogen with added water, heavy water and pure organic substances., Organic Geochemistry, Vol. 5, No. 4, 1984, pp. 267-278. DOI: https://doi.org/10.1016/0146-6380(84)90014-7

Holliday, R., King, J. and List, G., Hydrolysis of Vegetable Oils in Sub- and Supercritical Water., Industrial and Engineering Chemistry Research, Vol. 36, 1997, pp. 932-935. DOI: https://doi.org/10.1021/ie960668f

Huang, D., Advances in hydrocarbon generation theory (1): Generation and evolution model for immature oils and hydrocarbon., Journal of petroleum Science and Engineering, Vol. 22, No. 1-3, 1999, pp. 121-130. DOI: https://doi.org/10.1016/S0920-4105(98)00061-8

Jin, F.M., Kinetics of oxidation of food wastes with H2O2 in supercritical water., The Journal of Supercritical Fluids, Vol. 19, 2001, pp. 251-262. DOI: https://doi.org/10.1016/S0896-8446(00)00094-2

Kabyemela, B., Adschiri, T., Malaluan, R. and Arai, K., Glucose and Fructose Decomposition in Subcritical and Supercritical Water., Detailed Reaction Pathway, Mechanisms, and Kinetics, Industrial and Engineering Chemical Research, Vol. 38, No. 8, 1999, pp. 2888 -2895. DOI: https://doi.org/10.1021/ie9806390

Kamio, E., Takahashi, S., Noda, H. Fukuhara, C. and Okamura, T., Liquefaction of cellulose in hot compressed water under variable temperatures., Industrial and Engineering Chemistry Research, Vol. 45, 2006, pp. 4944-4953. DOI: https://doi.org/10.1021/ie060136r

Kang, K., Quitain, A., Daimon, H., Noda, R., Goto, N., Hu, H. and Fujie, K., Optimization of aminoacids production from waste fish entrails by hydrolysis in sub and supercritical water., Canadian Journal of Chemical Engineering, Vol. 79, 2001, pp. 65-70. DOI: https://doi.org/10.1002/cjce.5450790110

Katritzky, A., Lapucha, R. and Siskin, M., Aqueous High-Temperature Chemistry of Carbo- and Heterocycles. 12. Benzonitriles and Pyridinecarbonitriles, Benzamides and Pyridinecarboxamides, and Benzylamines and Pyridylamines., Energy & Fuels, Vol. 4, 1990, pp. 555-561. DOI: https://doi.org/10.1021/ef00023a026

Katritzky, A., Lapucha, R. and Siskin, M., Aqueous High-Temperature Chemistry of Carbo- and Heterocycles.

2-Substituted Pyridines., Energy & Fuels, Vol. 4, 1990a, pp. 506-510. DOI: https://doi.org/10.1021/ef00023a017

Katritzky, A., Lapucha, R. and Siskin, M., Aqueous High-Temperature Chemistry of Carbo- and Heterocycles. 4. 4-Substituted Pyridines., Energy & Fuels, Vol. 4, 1990b, pp. 510-514. DOI: https://doi.org/10.1021/ef00023a018

Katritzky, A., Balasubramanian, M. and Siskin, M., Aqueous High-Temperature Chemistry of Carbo- and Heterocycles. 2. Monosubstituted Benzenes: Benzyl Alcohol, Benzaldehyde, and Benzoic Acid., Energy & Fuels, Vol. 4, 1990c, pp. 499-505. DOI: https://doi.org/10.1021/ef00023a016

Katritzky, A., Allin, S. and Siskin, M. Aquathermolysis: Reactions of Organic Compounds with Superheated Water., Accounts Chemical Research, Vol. 29, 1996, pp. 399-406. DOI: https://doi.org/10.1021/ar950144w

Kawamoto, H., Hatanaka, W. and Saka, S., Thermo chemical conversion of cellulose in polar solvent (sulfolane) into levoglucosan and other low molecular-weight substances., Journal of Analytical and Applied Pyrolysis, Vol. 70, 2003, pp. 303-313. DOI: https://doi.org/10.1016/S0165-2370(02)00160-2

Kiennemann, A., Comunicación personal (Entrevista, Profesor-Investigador, Laboratorio de Materiales, Superficies y Procedimientos para Catálisis-ECPM, Universidad Louis Pasteur, Strasbourg, Francia, Septiembre de 2004, (kiennemann@chimie.u-strasbg.fr), 2004.

King, J., Holliday, R. and List, G., Hydrolysis of soybean oil in a subcritical water flow reactor., The Royal Society of Chemistry, Green Chemistry, December, 1999, pp. 261-264. DOI: https://doi.org/10.1039/a908861j

Koch, B., Christiansen, F., Maturation of lower Paleozoic kerogens from North Greenland., Organic Geochemistry, Vol. 20, No. 3, 1993, pp. 405-413. DOI: https://doi.org/10.1016/0146-6380(93)90128-X

Koopmans, M., Rijpstraa, I., Leeuw, J., Lewan, M. and Sinninghe, D., Artificial maturation of an immature sulfur- and organic matter-rich limestone from the Ghareb Formation., Jordan, Organic Geochemistry, Vol. 28, No. 7-8, 1998, pp. 503-521. DOI: https://doi.org/10.1016/S0146-6380(98)00015-1

Kruse, A. and Gawlick, A., Biomass Conversion in Water at 330-410 °C and 30-50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways., Industrial and Engineering Chemical Research, Vol. 42, 2003, pp. 267-279. DOI: https://doi.org/10.1021/ie0202773

Kruse, A., Gauwlik, A. and Henningsen, T. Biomass liquefaction and gasification in near and supercritical water: key compounds as a tool to understand chemistry., Institut für Technische Chemie CPV, Forschungzentrum Karlsruhe, Alemania, 2004.

Kuhlmann, B., Arnett, E. and Siskin, M., Classical Organic Reactions in Pure Superheated Water., Journal of Organic Chemistry, Vol. 59, 1994, pp. 3098-3101. DOI: https://doi.org/10.1021/jo00090a030

Kurita, K., Akao, H., Yang, J. and Shimojoh, M. Non-natural branched polysaccharides: synthesis and properties of chitin and chitosan having disaccharide maltose branches., Biomacromolecules, Vol. 4, 2003, pp.1264-1268. DOI: https://doi.org/10.1021/bm034074p

Landes, K., Geología del petróleo., 3º Ed., Ediciones Omega, Barcelona, España, 1977, pp. 463.

Lorant, F. and Behar, F. Late Generation of Methane from Mature Kerogens., Energy Fuels, Vol. 16, No. 2, pp. 412 -427. DOI: https://doi.org/10.1021/ef010126x

Luijkx, G., Hydrothermal conversion of carbohydrates and related compounds., Tesis Doctoral en Ingeniería Química, Universidad Tecnológica de Delft, Países Bajos, Holanda, 1993.

Mandoki, J., Depolymerization of condensation polymers., US Patent 4,605,762, Asignada a Celanese Mexicana S.A., 1986.

Minowa, T., Zhen, F., Ogi, T. and Varhegyi, G., Liquefaction of cellulose in hot compressed water using sodium carbonate: products distribution at different reaction temperatures., Journal of Chemical Engineering, Japan, Vol. 30, 1997, pp.186. DOI: https://doi.org/10.1252/jcej.30.186

Miyazawa, T. and Funazukuri, T., Hydrothermal production of mono(galacturonic acid) and oligomers from poly(galacturonic acid) with water under pressures., Industrial and Chemical Engineering Research, Vol. 43, 2004, pp 2310-2314. DOI: https://doi.org/10.1021/ie0202672

Modell, M., Reid, R. and Amin, S. Gasification process., US Patent 4.113.446, September 12, 1978.

Mok, W. and Antal, M. Uncatalyzed Solvolysis of Whole Biomass Hemicellulose by Hot Compressed

Liquid Water., Industrial and Engineering Chemistry Research, Vol. 31, 1992, pp 1157-1161. DOI: https://doi.org/10.1021/ie00004a026

Obenberger, P., Proximal analysis of biomass., Version 2,4, © BIOS Bioenergie system GmbH, Graz, Austria, Disponible www.bios-bioenergy.at, 2005.

Peterson, A., Studying the detailed chemistry of the hydrothermal reaction of glucose and glycine, which are model compounds for biomass, in a high-pressure and high-temperature environment., Cited en “Curriculum vitae”, Disponible en web.mit.edu/aap/www/CV, 2006.

Piskorz, J., Majerski, P., Radlein, D., Vladars-Usas, A. and Scott, D. Flash pyrolysis of cellulose for production of anhydro-oligomers., Journal of Analytical and Applied Pyrolysis, Vol. 56, 2000, pp.145-166. DOI: https://doi.org/10.1016/S0165-2370(00)00089-9

Ponder, G., Richards, G. and Stevenson, T., Influence of linkage position and orientation in pyrolysis of polysaccharides: A study of several glucans., Journal of Analytical and Applied Pyrolysis, Vol. 22, No. 3, 1992, pp.217-229. DOI: https://doi.org/10.1016/0165-2370(92)85015-D

Quitain, A., Sato, N., Daimon, H. and Fujie, K. Production of valuable materials by hydrothermal treatment of shrimp shells., Industrial and Engineering Chemistry, Vol. 40, 2001, pp 5885-5888. DOI: https://doi.org/10.1021/ie010439f

Rouxhet, P. and Robin, P., Infrared study of the evolution of kerogens of different origins during catagenesis and pyrolysis., Fuel, Vol. 57, No. 9, 1978, pp.533-540. DOI: https://doi.org/10.1016/0016-2361(78)90038-8

Saisu, M., Sato, T., Watanabe, M. Adschiri, T. and Arai, K., Conversion of lignin with supercritical water-phenol mixtures., Energy Fuels, Vol. 17, 2003, pp. 922. DOI: https://doi.org/10.1021/ef0202844

Sakai, K., Function and Application of Chitin-Chitosan Oligomers (Artículo en japonés, Referenciado por Quitain, 2001)., New Food Industries, Vol. 40, 1998, pp.17.

Saleh, R., Siskin, M. and Knudsen, G., Process for depolymerization of butyl rubbers and halobutyl rubbers using hot liquid water., Asignada a Exxon Research and Engineering Company, US Patent 5,283,318, February 1, 1994.

Sasaki, M., Furukawa, M., Minami, K., Adschiri, T. and Arai, K., Kinetics and Mechanism of Cellobiose Hydrolysis and Retro-Aldol condensation in Subcritical and Supercritical Water., Industrial and Engineering. Chemistry Research, Vol. 41, 2002a, pp. 6642-6649. DOI: https://doi.org/10.1021/ie020326b

Sasaki, T., Shibata, M., Sumi, T. and Yasuda, S., Saccharification of Cellulose Using a Hot-Compressed Water Flow Reactor., Industrial Engineering Chemical Research, Vol. 41, 2002, pp. 661-665. DOI: https://doi.org/10.1021/ie010614s

Sato, N., Kang, K., Daimon, H. and Fujie, K., Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water, Industrial and Engineering Chemical Research, Vol. 43, 2004, pp 3217-3222. DOI: https://doi.org/10.1021/ie020733n

Savage, P., Organic Chemical Reactions in Supercritical Water., Chemical Reviews, Vol. 99, 1999, pp.603-621. DOI: https://doi.org/10.1021/cr9700989

Savage, P., Comunicación personal., Ingeniero Químico, investigador del Departamento de Ingeniería Química de la Universidad de Michigan. Michigan, Estados Unidos de Norteamérica, psavage@umich.edu, 2005.

Sawada, H., Thermodynamics of polymerization., Marcel Dekker, New York, Estados Unidos de América, 1976.

Schmieder, H., Abeln, J., Boukis, N., Dinjus, E., Kruse, A., Kluth, M., Petrich, G., Sadri, E. and Schacht, M. Hydro thermal gasification of biomass and organic wastes., The Journal of Supercritical Fluids, No. 17, 2000, pp.145-153. DOI: https://doi.org/10.1016/S0896-8446(99)00051-0

Schobert, H., The chemistry of hydrocarbon fuels. Butterworth & Co (actualmente Elsevier Science ltd)., Londres, Reino Unido, 1990.

Schwarzinger, C., Comunicación Personal., Investigador del Instituto para Tecnología Química de Materiales Orgánicos, Universidad Johannes Kepler, clemens.schwarzinger@jku.a, Linz, Austria, January, 2005.

Serikawa, R., Funazukuri, T. and Wakao, N. Oil con version of vinasse with high density water., Fuel, Vol. 71, 1992, pp.283-287. DOI: https://doi.org/10.1016/0016-2361(92)90075-Y

Shaw, R., Brill, W., Clifford, T. and Anthony, A. Supercritical Water, a medium for chemistry., Chemical & Engineering News, Vol. 69, No. 51, December 23, 1991, pp.26-39. DOI: https://doi.org/10.1021/cen-v069n051.p026

Siskin, M., Katritzky, A. and Balasubramanian, R., Aqueous organic chemistry. 9. Reactivity of 1,5-, 1,6-, 1,7- and 2,6-dihydroxynaphthalenes, dibenzofuran, 2-hydroxydibenzofuran, carbazole, 2-hydroxycarbazole, acridine and 4-hydroxyacridine., Fuel, Vol. 74, 1995, pp 1509-1511. DOI: https://doi.org/10.1016/0016-2361(95)00118-O

Siskin, M. and Katritzky, A., A review of the reactivity of organic compounds with oxygen-containing functionality in superheated water., Journal of analytical and applied pyrolysis, Vol. 54, 2000, pp.193-214. DOI: https://doi.org/10.1016/S0165-2370(99)00081-9

Siskin, M., Brons, G., Vauchn, S. and Katritzky, A. Aqueous Organic Chemistry. 3. Aquathermolysis: Reactivity of Ethers and Esters., Energy & Fuels, Vol. 5, 1990, pp.488-492. DOI: https://doi.org/10.1021/ef00023a014

Siskin, M., Brons, G., Katritzky, A. and Murugan, R. Aqueous Organic Chemistry. 2. Cross-Linked Cyclohexyl Phenyl Compounds., Energy Fuels, Vol. 4, 1990a, pp.482-488. DOI: https://doi.org/10.1021/ef00023a013

Siskin, M., Brons, G., Katritzky, A. and Balasubramanian, M., Aqueous organic chemistry. 1. Aquathermolysis: Comparison with thermolysis in the reactivity of aliphatic compounds., Energy & Fuels, Vol. 4, 1990, pp.475-482. DOI: https://doi.org/10.1021/ef00023a012

Srokol, Z., Hydrothermal liquefaction of biomass: reaction paths and kinetics., Tesis de doctorado, Universidad Tecnológica de Delft, Países Bajos, 2004.

Stein, S., Free radicals in coal conversion., Chemistry of coal conversion, editado por Richard H. Schlosberg, Plenum Press, Nueva York, Estados Unidos de América, 1985. DOI: https://doi.org/10.1007/978-1-4899-3632-5_2

Suárez, M., Comunicación personal. Bióloga, especialista en microbiológia de organismos patógenos., Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Bogotá, abril, 2005.

Szabo, P., Minowa, T. and Ogi, T., Liquefaction of cellulose in hot compressed water using sodium carbonate. Part 2: Thermogravimetric mass spectrometric study of the solid residues., Journal of Chemical Engineering, Japón, Vol. 31, 1998, pp.571. DOI: https://doi.org/10.1252/jcej.31.571

Towsend, S., Abraham, M., Huppert, G. and Klein, S. Solvent effects during reactions in supercritical water., Industrial and Engineering Chemical Research, Vol. 27, 1988, pp.143-149. DOI: https://doi.org/10.1021/ie00073a026

Xu, X., Antal, M. and Anderson, D., Mechanism and temperature-dependent kinetics of the dehydration of tertbutyl alcohol in hot compressed liquid water., Industrial and Engineering.Chemistry Research, Vol. 36, No. 1, 1997, pp.23-41. DOI: https://doi.org/10.1021/ie960349o

Yan, Y., Xu, J., Li, T. and Ren, Z. Liquefaction of sawdust for liquid fuel., Fuel Processing Technology, Vol. 60, 1999, pp.135-143. DOI: https://doi.org/10.1016/S0378-3820(99)00026-0

Yu, D., Aihara, M. and Antal, M., Hydrogen production by steam reforming glucose in supercritical water., Energy and Fuels, Vol. 7, 1993, pp.574-577. DOI: https://doi.org/10.1021/ef00041a002

Yu, J. and Savage, P., Decomposition of Formic Acid under Hydrothermal Conditions. Industrial and Engineering Chemical Research, Vol. 37, 1998, pp.2 -10. DOI: https://doi.org/10.1021/ie970182e

Zhong, C., Peters, C. and De Swaan-Arons, J., Thermodynamic modeling of biomass conversion processes., Fluid Phase Equilibria, Vol. 194-197, 2002, pp.805-815. DOI: https://doi.org/10.1016/S0378-3812(01)00668-9

How to Cite

APA

Castro Vega, A. A., Rodríguez Varela, L. I. and Díaz Velásquez, J. de J. (2007). Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways. Ingeniería e Investigación, 27(1), 41–50. https://doi.org/10.15446/ing.investig.v27n1.14777

ACM

[1]
Castro Vega, A.A., Rodríguez Varela, L.I. and Díaz Velásquez, J. de J. 2007. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways. Ingeniería e Investigación. 27, 1 (Jan. 2007), 41–50. DOI:https://doi.org/10.15446/ing.investig.v27n1.14777.

ACS

(1)
Castro Vega, A. A.; Rodríguez Varela, L. I.; Díaz Velásquez, J. de J. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways. Ing. Inv. 2007, 27, 41-50.

ABNT

CASTRO VEGA, A. A.; RODRÍGUEZ VARELA, L. I.; DÍAZ VELÁSQUEZ, J. de J. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways. Ingeniería e Investigación, [S. l.], v. 27, n. 1, p. 41–50, 2007. DOI: 10.15446/ing.investig.v27n1.14777. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14777. Acesso em: 11 jan. 2025.

Chicago

Castro Vega, Alejandro Amadeus, Luis Ignacio Rodríguez Varela, and José de Jesús Díaz Velásquez. 2007. “Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways”. Ingeniería E Investigación 27 (1):41-50. https://doi.org/10.15446/ing.investig.v27n1.14777.

Harvard

Castro Vega, A. A., Rodríguez Varela, L. I. and Díaz Velásquez, J. de J. (2007) “Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways”, Ingeniería e Investigación, 27(1), pp. 41–50. doi: 10.15446/ing.investig.v27n1.14777.

IEEE

[1]
A. A. Castro Vega, L. I. Rodríguez Varela, and J. de J. Díaz Velásquez, “Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways”, Ing. Inv., vol. 27, no. 1, pp. 41–50, Jan. 2007.

MLA

Castro Vega, A. A., L. I. Rodríguez Varela, and J. de J. Díaz Velásquez. “Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways”. Ingeniería e Investigación, vol. 27, no. 1, Jan. 2007, pp. 41-50, doi:10.15446/ing.investig.v27n1.14777.

Turabian

Castro Vega, Alejandro Amadeus, Luis Ignacio Rodríguez Varela, and José de Jesús Díaz Velásquez. “Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways”. Ingeniería e Investigación 27, no. 1 (January 1, 2007): 41–50. Accessed January 11, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14777.

Vancouver

1.
Castro Vega AA, Rodríguez Varela LI, Díaz Velásquez J de J. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways. Ing. Inv. [Internet]. 2007 Jan. 1 [cited 2025 Jan. 11];27(1):41-50. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14777

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Leidy Natalia Moreno-Chocontá, Alejandra Sophia Lozano-Pérez, Carlos Alberto Guerrero-Fajardo. (2024). Evaluation of the Effect of Particle Size and Biomass-to-Water Ratio on the Hydrothermal Carbonization of Sugarcane Bagasse. ChemEngineering, 8(2), p.43. https://doi.org/10.3390/chemengineering8020043.

2. J. J. Mascarell, F. J. Ruiz-Jorge, Jose M. Abelleira-Pereira, Juan R. Portela, Enrique J. Martínez de la Ossa. (2023). Production of crude oil from industrial wastes and wastewaters by hydrothermal liquefaction. Journal of Material Cycles and Waste Management, 25(6), p.3476. https://doi.org/10.1007/s10163-023-01771-z.

3. Yuliana Rosas Hernández, Luz Arcelia García Serrano, Daniel Tapia Maruri, Antonio Ruperto Jiménez Aparicio, Brenda Hildeliza Camacho Díaz, Martha Lucía Arenas Ocampo. (2018). Optimization of the Microwave-Assisted Ethanosolv Extraction of Lignocellulosic Compounds from the Bagasse of Agave angustifolia Haw Using the Response Methodology. Journal of Agricultural and Food Chemistry, 66(13), p.3533. https://doi.org/10.1021/acs.jafc.7b04627.

4. Mariana González Prieto, Francisco A. Sánchez, Selva Pereda. (2015). Thermodynamic model for biomass processing in pressure intensified technologies. The Journal of Supercritical Fluids, 96, p.53. https://doi.org/10.1016/j.supflu.2014.08.024.

Dimensions

PlumX

Article abstract page views

444

Downloads

Download data is not yet available.

Most read articles by the same author(s)