Mathematical models of membrane fouling in cross-flow micro-filtration
Modelos matemáticos de la colmatación de membranas en microfiltración tangencial
DOI:
https://doi.org/10.15446/ing.investig.v28n1.14876Palabras clave:
fouling, membrane, microfiltration, mathematical model, concentration polarisation, pore blocking, shear-induced diffusion, lateral migration (en)colmatación, membranas, microfiltración, modelos matemáticos, polarización de la concentración, bloqueo de poro, difusión de corte inducido, migración lateral (es)
Descargas
The greatest difficulty arising during cross-flow micro-filtration is the formation of a cake layer on the membrane surface (also called fouling), thereby affecting system performance. Fouling has been related to permeate flux decay resulting from changes in operating variables. Many articles have been published in an attempt to explain this phenomenon but it has not yet been fully understood because it depends on specific solution/membrane interactions and differing parameters. This work was aimed at presenting an analytical review of recently published mathematical models to explain fouling. Although the reviewed models can be adjusted to any type of application, a simple “concentration polarisation” model is advisable in the particular case of tropical fruit juices for describing the insoluble solids being deposited on membrane surface.
La mayor dificultad durante la microfiltración tangencial es la formación de una capa de torta en la superficie membranaria, también llamada “colmatación”, la cual afecta el desempeño del sistema. La colmatación se ha relacionado al decaimiento del flux de permeado como resultado de cambios en las variables de operación. Muchos trabajos se han publicado para explicar este fenómeno, pero aún no se ha entendido totalmente porque depende de interacciones específicas solución/membrana y de diversos parámetros. El objeto de este trabajo es presentar una revisión analítica de los modelos matemáticos recientemente publicados para explicar el fenómeno de colmatación. Aunque los modelos revisados se ajustan a cualquier tipo de aplicación, en el caso particular de jugos de frutas tropicales, un modelo sencillo de “polarización de la concentración” es conveniente para describir la deposición de los sólidos insolubles en la superficie de la membrana.
Referencias
Agashichev, S. P., Concentration polarization in cross-flow microfiltration under the conditions of shear-induced diffusion., Desalination, 200, 2006, pp. 346-348. DOI: https://doi.org/10.1016/j.desal.2006.03.373
Altena, F. W., Belfort, G., Lateral migration of spherical particles in porous flow channels: applications to membrane filtration., Chem. Eng. Sci., 89 (2), 1984, pp. 343-355. DOI: https://doi.org/10.1016/0009-2509(84)80033-0
Altmann, J., Ripperger, S., Particle deposition and layer formation at the crossflow microfiltration., J. Memb. Sci., 124, 1991, pp. 119-128. DOI: https://doi.org/10.1016/S0376-7388(96)00235-9
Bacchin, P., Si-Hassen, D., Starov, V., Clifton, M.J. y Aimar, P., A unifying model for concentration polarization, gel layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions., Chem. Eng. Sci., 57, 2002, pp. 77-91. DOI: https://doi.org/10.1016/S0009-2509(01)00316-5
Balakrishnan, M., Dua, M., Bhagat, J. J., Effect of operating parameters on sugarcane juice ultrafiltration: results of a field experience., Sep. Pur. Tech., 19, 2000, pp. 209- 220. DOI: https://doi.org/10.1016/S1383-5866(00)00054-X
Bird, M. R., Barttlet, M., Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate., J. Food Eng., 53, 2002, pp. 143-152. DOI: https://doi.org/10.1016/S0260-8774(01)00151-0
Bird, R. B., Stewart, W. E., Lightfoot, E. N., Fenómenos de Transporte., Editorial Reverté, S.A., México, 1993.
Bolton, G., LaCasse, D., Kuriyel, R., Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids., J. Memb. Sci., 277, 2005, pp. 75-84. DOI: https://doi.org/10.1016/j.memsci.2004.12.053
Carneiro, L., dos Santos Sa., I., dos Santos Gomes, F., Matta, V. M., Cabral., L. M. C., Cold sterilization and clarification of pinneapple juice by tangential microfiltration., Desalination 148, 2002, pp. 93-98. DOI: https://doi.org/10.1016/S0011-9164(02)00659-8
Carrère, H., Blaszkowa, F., Roux de Balmann, H., Modelling the microfiltration of lactic acid fermentation broths and comparison of operating modes., Desalination, 145, 2002, pp. 201-206. DOI: https://doi.org/10.1016/S0011-9164(02)00409-5
Choi, H., Zhang, K., Dionysiou, D. D., Oerther, D.B., Sorial, G. A., Influence of cross-flow velocity on membrane performance during filtration of biological suspension., J. Memb. Sci., 248, 2005, pp. 189-199. DOI: https://doi.org/10.1016/j.memsci.2004.08.027
Cross, R. A., Optimum process designs for ultrafiltration and crossflow microfiltration systems., Desalination, 145, 2002, pp. 59-163. DOI: https://doi.org/10.1016/S0011-9164(02)00402-2
Cumming, I. W., Holdich, R. G., Ismail, B., Prediction of deposit depth and transmembrane pressure during crossflow microfiltration. J. Memb. Sci., 154, 1999, pp. 229-237. DOI: https://doi.org/10.1016/S0376-7388(98)00293-2
Curcio, S., Calabrò, V., Iorio, G., A theoretical analysis of transport phenomena in membrane concentration of liquorice solutions: a FEM approach., J. Food Eng., 71, 2005, pp. 252-264. DOI: https://doi.org/10.1016/j.jfoodeng.2004.11.005
Curcio, S., Calabrò, V., Iorio, G., Cindío, B., Fruit juice concentration by membranes: effect of rheological properties on concentration polarization phenomena., J. Food Eng., 48, 2001, pp. 235-241. DOI: https://doi.org/10.1016/S0260-8774(00)00163-1
Davis, R. H., Leighton, D. T., Shear-induced transport of a particle layer along a porous wall., Chem. Eng. Sci. 42 (2), 1987, pp. 275-281. DOI: https://doi.org/10.1016/0009-2509(87)85057-1
Davis, R. H., Sherwood, J. D., A similarity solution for steady-state crossflow microfiltration., Chem. Eng. Sci. 45 (11), 1990, pp. 3203-3209. DOI: https://doi.org/10.1016/0009-2509(90)80212-W
Djuric, M., Gyura, J., Zavargo, Z., Seres, Z., Tekic, M., Modelling of ultrafiltration of non-sucrose compounds in sugar beet processing., J. Food Eng., 65, 2004, pp. 73-82. DOI: https://doi.org/10.1016/j.jfoodeng.2003.12.005
Duclos-Orsello, C., Weiyi, L., Chia-Chi, H., A three mechanism model to describe fouling of microfiltration mem branes., J. Memb. Sci., 280, 2006, pp. 856–866. DOI: https://doi.org/10.1016/j.memsci.2006.03.005
Eckstein, E. C., Bailey, D. G., Shapiro, A. H., Self diffusion of particles in shear flow of a suspension., J. Fluid Mech. 79, 1977, pp. 191-208. DOI: https://doi.org/10.1017/S0022112077000111
Green, G., Belfort, G., Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model., Desalination, 35, 1980, pp.129-147. DOI: https://doi.org/10.1016/S0011-9164(00)88607-5
Hermia, J., Constant pressure blocking filtration law: Application to power law non-newtonians fluids., Trans. I. Chem. E., 60, 1982, pp.183-188.
Hwang, K-J., Lin, T-T., Effect of morphology of polymeric membrane on the performance of cross-flow micro filtration., J. Memb. Sci. 199, 2002, pp. 41-52. DOI: https://doi.org/10.1016/S0376-7388(01)00675-5
Hwang, K.-J., Wu, R.-M., Use of models in the design of cross-flow microfilters for the purification of protein from bio-mixtures., J. Chin. Inst. Chem. Eng. ARTICLE IN PRESS.
Jiraratananon, R., Chanachai, A., A study fouling in the ultrafiltration of passion fruit juice., J. Memb. Sci. 111, 1996, pp. 39-48. DOI: https://doi.org/10.1016/0376-7388(95)00270-7
Jonsson, G., Prádanos, P., Hernández, A., Fouling phenomena in microporous membranes., Flux decline kinetics and structural modifications. J. Memb. Sci. 112, 1996, pp. 171-183. DOI: https://doi.org/10.1016/0376-7388(95)00286-3
Kawakatsu, T., Nakajima, M., Nakao, S., Kimura, S., Three dimensional simulation of random packing and pore blocking phenomena during microfiltration., Desalination, 101, 1995, pp. 203-209. DOI: https://doi.org/10.1016/0011-9164(95)00023-U
Knutsen, J. S., Davis, R. H., Deposition of foulant particles during tangential flow filtration., J. Memb. Sci., 271, 2006, pp. 101-113. DOI: https://doi.org/10.1016/j.memsci.2005.06.060
Kromkamp, J., Bastiaanse, A., Swarts, J., Brans, G., van der Sman, R. G. M., Boom, R. M., A suspension model for hydrodynamics and concentration polarization in crossflow microfiltration., J. Memb. Sci. 253, 2005, pp. 67-79. DOI: https://doi.org/10.1016/j.memsci.2004.12.028
Lee, Y., Clark, M., Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. J. Memb. Sci. 149, 1998, pp. 181-202. DOI: https://doi.org/10.1016/S0376-7388(98)00177-X
Leighton, D. T., Acrivos, A., Measurement of the shear induced coefficient of self-diffusion in concentrated suspension spheres. J. Fluid Mech., 177, 1987, pp. 109- 131. DOI: https://doi.org/10.1017/S0022112087000880
Mondor, M., Moresoli, C., Experimental verification of the shear-induced hydrodinamic diffusion model of crossflow microfiltration, with consideration the transmembrane pressure axial variation., J. Memb. Sci. 175, 2000, pp. 119-137. DOI: https://doi.org/10.1016/S0376-7388(00)00410-5
Nassehi, V., Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration., Chem. Eng. Sci., 53 (6), 1998, pp. 1253-1265. DOI: https://doi.org/10.1016/S0009-2509(97)00443-0
Riedl, K., Girard, B., Lencki, R. W., Influence of membrane structure in fouling layer morphology during apple juice clarification., J. Memb. Sci., 139, 1998, pp. 155-166. DOI: https://doi.org/10.1016/S0376-7388(97)00239-1
Ripperger, S., Altmann, J., Crossflow microfiltration – state of art., Sep. Pur. Tech., 26, 2002, pp. 19-31. DOI: https://doi.org/10.1016/S1383-5866(01)00113-7
Romero, C. A., Davis, R. H., Global model of crossflow microfiltration based on hydrodynamic particle diffusion., J Memb. Sci., 39, 1988, pp. 157-185. DOI: https://doi.org/10.1016/S0376-7388(00)80987-4
Romero, C. A., Davis, R. H., Transient model of crossflow microfiltration., Chem. Eng. Sci., 45 (1), 1990, pp. 13-25. Song, L., A new model for the calculation of the limiting flux in ultrafiltration., J. Memb. Sci. 144, 1998a, pp, 173- 185. DOI: https://doi.org/10.1016/0009-2509(90)87076-5
Song, L., Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling., J. Memb. Sci. 139, 1998b, pp. 183-200. DOI: https://doi.org/10.1016/S0376-7388(97)00263-9
Stamatakis, K., Tien, C., A simple model of cross-flow filtration based on particle adhesion., AIChE J., 39 (8), 1993, pp.1292-1302. DOI: https://doi.org/10.1002/aic.690390805
Thomassen, J. K., Faraday, D. B. F., Underwood, B. O., Cleaver, J. A. S., The effect of varying transmembrane pressure and crossflow velocity on the microfiltration fouling of a model beer., Sep. Pur. Tech., 41, 2005, pp. 91-100. DOI: https://doi.org/10.1016/j.seppur.2004.05.002
Vaillant, F., Cisse, M., Chaverri, M., Perez, A., Dornier, M., Viquez, F., Dhuique-Mayer, C., Clarification and concentration of melon juice using membrane processes., Inn. Food Sci. Eng. Tech., 6, 2005, pp. 213-220. DOI: https://doi.org/10.1016/j.ifset.2004.11.004
Vaillant, F., Perez, A., M., Viquez, F., Microfiltración tangencial: una alternativa innovadora para la transformación de frutas tropicales., La Alimentación Latinoamericana 252, 2004, pp. 38-46.
Vaillant, F., Millan, A., Dornier, M., Decloux, M., Reynes, M., Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration. J. Food Eng., 48, 2001, pp. 83-90. DOI: https://doi.org/10.1016/S0260-8774(00)00152-7
Vaillant, F., Millán, P., O’Brien, G., Dornier, M., Decloux, M., Reynes, M., Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction., J. Food Eng., 42, 1999, pp. 215-224. DOI: https://doi.org/10.1016/S0260-8774(99)00124-7
Vélez, C., Franco, E., González, J. A., Nuevos procesos membranarios aplicados a frutas tropicales-Ajustes hacia la fase industrial., Informe final de la automatización. Proyecto COLCIENCIAS-UNIVALLE-CIRAD-PASSICOL, Cali, 2007.
Vyas, H. K., Bennett, R. J., Marshall, A. D., Performance of crossflow microfiltration during constant transmembrane pressure and constant flux operations., Int. Dairy J. 12, 2002, pp. 473-479. DOI: https://doi.org/10.1016/S0958-6946(02)00020-1
Wang, B. J., Wei, T. C., Yu, Z. R., Effect of operating temperature on component distribution of West Indian cherry juice in a microfiltration system., LWT, 38, 683- 689, 2005. DOI: https://doi.org/10.1016/j.lwt.2004.09.002
Wang, L., Song, L., Flux decline in crossflow microfiltration and ultrafiltration: experimental verification of fouling dynamics., J. Memb. Sci., 160, 1999, pp. 41-50. DOI: https://doi.org/10.1016/S0376-7388(99)00075-7
Wiley, D. E., Fletcher, D. F., Techniques for computational fluid dynamics modeling of flow in membrane channels., J. Memb. Sci., 211, 2003, pp. 127-137. DOI: https://doi.org/10.1016/S0376-7388(02)00412-X
Ye, Y., Le Clech, V., Fane, A. G., Evolution of fouling during crossflow filtration of model EPS solutions., J. Memb. Sci., 264, 2005, pp. 190-199. DOI: https://doi.org/10.1016/j.memsci.2005.04.040
Youn, K-S., Hong, J-H., Bae, D-H., Kim, S-J., Kim, S-D., Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment., J. Memb. Sci., 228, 2004, pp. 179-186. DOI: https://doi.org/10.1016/j.memsci.2003.10.006
Yu, J., Lencki, W., Effect of enzyme treatments on the fouling behavior of apple juice during microfiltration., J. Food Eng., 63, 2004, pp. 413-423. DOI: https://doi.org/10.1016/j.jfoodeng.2003.08.013
Zydney, L., Colton, C. K., A concentration polarization model for the filtrate flux in crossflow microfiltration of particulate suspensions., Chem. Eng. Comm., 47, 1986, pp. 1-21. DOI: https://doi.org/10.1080/00986448608911751
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Naveen G. Jesubalan, Garima Thakur, Anurag S. Rathore. (2023). Deep neural network for prediction and control of permeability decline in single pass tangential flow ultrafiltration in continuous processing of monoclonal antibodies. Frontiers in Chemical Engineering, 5 https://doi.org/10.3389/fceng.2023.1182817.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2008 Mónica Jimena Ortíz Jerez, Carlos Antonio Vélez Pasos, Edinson Franco Mejía

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/ingeinv), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.