Publicado

2022-01-01

Métodos de previsão de demanda: uma revisão da literatura

Demand Forecasting Methods: A Literature Review

Métodos de predicción de demanda: una revisión de la literatura

DOI:

https://doi.org/10.15446/innovar.v32n85.100979

Palabras clave:

métodos de previsão de demanda, previsão, previsão de demanda, revisão (pt)
métodos de predicción de demanda, previsión, revisión, previsión de demanda (es)
Demand forecasting methods, forecasting, demand forecasting, literature review (en)

Autores/as

a previsão de demanda é uma metodologia da administração de empresas para estimar um valor futuro de uma grandeza de interesse. Realizar previsões de demanda significa reconhecer padrões de comportamento em séries históricas e predizer o comportamento futuro ou, ainda, identificar fatores causais que afetam o comportamento e extrapolá-lo. Este artigo tem por objetivo realizar uma revisão da literatura dos métodos de previsão de demanda com o propósito de reunir os métodos e os modelos disponíveis acerca dos conceitos utilizados atualmente na administração de empresas relacionados ao consumo e à produção de produtos e serviços. A metodologia utilizada é a revisão da literatura com abordagem qualitativa, com o propósito de dar uma visão descritiva geral dos métodos dominantes utilizados em previsão de demanda. Foi realizado o mapeamento da literatura para identificar o estado da ciência por meio da produção científica disponível nos bancos de dados Scopus e Google Scholar. Os métodos qualitativos e os causais estão mais bem associados a previsões de médio e longo prazos. A análise de séries temporais bem como os métodos dos diversos tipos de médias e de suavização exponencial são indicados como os mais adequados para previsões de curto prazo. Um recurso utilizado em diversas realidades é a construção de um modelo próprio de previsão de demanda, o qual utilize técnicas, aspectos, conceitos e características de diferentes métodos e modelos. É fundamental monitorar o modelo adotado, manter os dados de campo e de previsão sob controle e, se houver desvios, corrigir o modelo.

Demand forecasting is a business management methodology for estimating the future value of customer demand. Making this type of forecast means recognizing behavior patterns in historical series and predicting future behaviors, or even identifying and extrapolating causal factors that affect market behavior. Hence, this article aims to review the literature on demand forecasting methods in order to gather the methods and models currently used in business administration related to the consumption and production of goods and services. A qualitative literature review was implemented with the purpose of providing a general descriptive view of the dominant methods used in demand forecasting. A mapping of the available literature was conducted to build the state of the art on the topic through the scientific production included in Scopus and Google Scholar databases. Results show that qualitative and causal methods are better associated with medium and long-term forecasts. In addition, the analysis of time series and the methods of the diverse types of averages and exponential smoothing are mentioned as the most suitable for short-term forecasts. A resource that is commonly deployed is the construction of specific demand forecast models, using techniques, aspects, concepts and characteristics from different methods and models. However, it is important to monitor the adopted model, keep field and forecast data under control, and, in case of deviations, correct the model.

La predicción de demanda es una metodología de la administración de empresas para estimar un valor futuro de una grandeza de interés. Realizar predicción de demanda significa reconocer estándares de conducta en series históricas y predecir la conducta o, aun, identificar factores causales que afectan la conducta y extrapolarla. El artículo tiene el propósito realizar una revisión de la literatura de los métodos de predicción de demanda con el fin de reunir los métodos y modelos disponibles acerca de los conceptos utilizados actualmente en la administración de empresas relacionados al consumo y producción de productos y servicios. La metodología utilizada es la revisión de la literatura con enfoque cualitativo, con el propósito de dar una visión descriptiva general de los métodos dominantes utilizados en predicción de demanda. Se realizó el mapeo de la literatura para identificar el estado de la ciencia por medio de la producción científica disponible en los bancos de datos Scopus y Google Scholar. El análisis de series temporales, así como los métodos de los diversos tipos de medianas y suavización exponencial se indican como los más adecuados para predicciones de corto plazo. Un recurso utilizado en diversas realidades es la construcción de un modelo propio de predicción de demanda, que utilice técnicas, aspectos, conceptos y características de diferentes métodos y modelos. Es fundamental monitorear el modelo adoptado, mantener los datos de campo y predicción bajo control y, si hubo desviaciones, corregir el modelo.

Referencias

Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F. M., Preen, D. B., Stewart, L. M., & Fatovich, D. M. (2015). A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in western Australia. Journal of Biomedical Informatics, 57, 62-73. https://doi.org/10.1016/j.jbi.2015.06.022 DOI: https://doi.org/10.1016/j.jbi.2015.06.022

Afilal, M., Yalaoui, F., Dugardin, F., Amodeo, L., Laplanche, D., & Blua, B. (2016). Forecasting the emergency department patients flow. Journal of Medical Systems, 40(7), 175. https://doi.org/10.1007/s10916-016-0527-0 DOI: https://doi.org/10.1007/s10916-016-0527-0

Aizenberg, I., Sheremetov, L., Villa-Vargas, L., & Martinez-Muñoz, J. (2016). Multilayer neural network with multi-valued neurons in time series forecasting of oil production. Neurocomputing, 175(B), 980-989. https://doi.org/10.1016/j.neucom.2015.06.092 DOI: https://doi.org/10.1016/j.neucom.2015.06.092

Armstrong, J., & Green, K. (2019, 26 abril). Demand forecasting evidence-based methods. https://www.researchgate.net/publication/5179920_Demand_Forecasting_Evidence-Based_Methods/link/02e7e5225d7d061e2d000000/download

Arvan, M., Fahimnia, B., Reisi, M., & Siemsen, E. (2019). Integrating human judgement into quantitative forecasting methods: A review. Omega, 86, 237-252. https://doi.org/10.1016/j.omega.2018.07.012 DOI: https://doi.org/10.1016/j.omega.2018.07.012

Boroojeni, K. G., Amini, M. H., Bahrami, S., Iyengar, S. S., Sarwat, A. I., & Karabasoglu, O. (2017). A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon. Electric Power Systems Research, 142, 58-73. https://doi.org/10.1016/j.epsr.2016.08.031 DOI: https://doi.org/10.1016/j.epsr.2016.08.031

Brentan, B. M., Luvizotto Jr, E., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532-541. https://doi.org/10.1016/j.cam.2016.02.009 DOI: https://doi.org/10.1016/j.cam.2016.02.009

Carvalho-Silva, M., Monteiro, M. T. T., Sá-Soares, F., & Dória-Nóbrega, S. (2018). Assessment of forecasting models for patients arrival at emergency department. Operations Research for Health Care, 18, 112-118. https://doi.org/10.1016/j.orhc.2017.05.001 DOI: https://doi.org/10.1016/j.orhc.2017.05.001

Chae, Y. T., Horesh, R., Hwang, Y., & Lee, Y. M. (2016). Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings. Energy and Buildings, 111, 184-194. https://doi.org/10.1016/j.enbuild.2015.11.045 DOI: https://doi.org/10.1016/j.enbuild.2015.11.045

De Löe, R. C., Melnychuk, N., Murray, D., & Plummer, R. (2016). Advancing the state of policy delphi practice: A systematic review evaluating methodological evolution, innovation, and opportunities. Technological Forecasting and Social Change, 104, 78-88. https://doi.org/10.1016/j.techfore.2015.12.009 DOI: https://doi.org/10.1016/j.techfore.2015.12.009

Deb, C., Zhang, F., Yang, J., Lee, S. E., & Shah, K. W. (2017). A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 74, 902-924. https://doi.org/10.1016/j.rser.2017.02.085 DOI: https://doi.org/10.1016/j.rser.2017.02.085

Efendi, R., Ismail, Z., & Deris, M. M. (2015). A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand. Applied Soft Computing, 28, 422-430. https://doi.org/10.1016/j.asoc.2014.11.043 DOI: https://doi.org/10.1016/j.asoc.2014.11.043

Fang, T., & Lahdelma, R. (2016). Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system. Applied Energy, 179, 544-552. https://doi.org/10.1016/j.apenergy.2016.06.133 DOI: https://doi.org/10.1016/j.apenergy.2016.06.133

Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an online retailer: Demand forecasting and price optimization. Manufacturing and Service Operations Management, 18(1), 69-88. https://doi.org/10.1287/msom.2015.0561 DOI: https://doi.org/10.1287/msom.2015.0561

Fiot, J., & Dinuzzo, F. (2016). Electricity demand forecasting by multi-task learning. IEEE Transactions on Smart Grid, 9(2), 544-551. http://doi.org/10.1109/TSG.2016.2555788 DOI: https://doi.org/10.1109/TSG.2016.2555788

Fortsch, S. M., & Khapalova, E. A. (2016). Reducing uncertainty in demand for blood. Operations Research for Health Care, 9, 16-28. https://doi.org/10.1016/j.orhc.2016.02.002 DOI: https://doi.org/10.1016/j.orhc.2016.02.002

Green, K. C., & Armstrong, J. S. (2015). Simple versus complex forecasting: The evidence. Journal of Business Research, 68(8), 1678-1685. https://doi.org/10.1016/j.jbusres.2015.03.026 DOI: https://doi.org/10.1016/j.jbusres.2015.03.026

Guo, H., Pedrycz, W., & Liu, X. (2018). Fuzzy time series forecasting based on axiomatic fuzzy set theory. Neural Computing and Applications, 31, 3921-3932. https://doi.org/10.1007/s00521-017-3325-9 DOI: https://doi.org/10.1007/s00521-017-3325-9

Jamil, M., & Zeeshan, M. (2018). A comparative analysis of ANN and chaotic approach-based wind speed prediction in India. Neural Computing and Applications, 31, 6807-6819. https://doi.org/10.1007/s00521-018-3513-2 DOI: https://doi.org/10.1007/s00521-018-3513-2

Joo, T. W., & Kim, S. B. (2015). Time series forecasting based on wavelet filtering. Expert Systems with Applications, 42(8), 3868-3874. https://doi.org/10.1016/j.eswa.2015.01.026 DOI: https://doi.org/10.1016/j.eswa.2015.01.026

Jun, S.-P., Sung, T.-E, & Park, H.-W. (2017). Forecasting by analogy using the web search traffic. Technological Forecasting and Social Change, 115, 37-51. https://doi.org/10.1016/j.techfore.2016.09.014 DOI: https://doi.org/10.1016/j.techfore.2016.09.014

Katsikopoulos, K. V., Durbach, I. A., & Stewart, T. J. (2018). When should we use simple decision models? A synthesis of various research strands. Omega, 81, 17-25. https://doi.org/10.1016/j.omega.2017.09.005 DOI: https://doi.org/10.1016/j.omega.2017.09.005

Ke, J., Zheng, H., Yang, H., & Chen, X. (2017). Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach. Transportation Research Part C: Emerging Technologies, 85, 591-608. https://doi.org/10.1016/j.trc.2017.10.016 DOI: https://doi.org/10.1016/j.trc.2017.10.016

Kocak, C. (2017). Arma (p, q) type high order fuzzy time series forecast method based on fuzzy logic relations. Applied Soft Computing, 58, 92-103. https://doi.org/10.1016/j.asoc.2017.04.021 DOI: https://doi.org/10.1016/j.asoc.2017.04.021

Kudlak, R., Szöcs, I., Krumay, B., & Martinuzzi, A. (2018). The future of CSR — Selected findings from a Europe-wide Delphi study. Journal of Cleaner Production, 183, 282-291. https://doi.org/10.1016/j.jclepro.2018.02.119 DOI: https://doi.org/10.1016/j.jclepro.2018.02.119

Li, X., Pan, B., Law, R., & Huang, X. (2017). Forecasting tourism demand with composite search index. Tourism Management, 59, 57-66. https://doi.org/10.1016/j.tourman.2016.07.005 DOI: https://doi.org/10.1016/j.tourman.2016.07.005

Lucas, A., & Zhang, X. (2016). Score-driven exponentially weighted moving averages and value-at-risk forecasting. International Journal of Forecasting, 32(2), 293-302. https://doi.org/10.1016/j.ijforecast.2015.09.003 DOI: https://doi.org/10.1016/j.ijforecast.2015.09.003

Luo, L., Luo, L., Zhang, X., & He, X. (2017) Hospital daily outpatient visits forecasting using a combinatorial model based on Arima and SES models. BMC Health Services Research, 17(1), 1-13. https://doi.org/10.1186/s12913-017-2407-9 DOI: https://doi.org/10.1186/s12913-017-2407-9

Lv, C., Xing, Y., Zhang, J., Na, X., Li, Y., Liu, T., Cao, D. & Wang, F.-Y. (2017). Levenberg-marquardt backpropagation training of multilayer neural network for state estimation of a safety-critical cyber-physical system. IEEE Transactions on Industrial Informatics, 14(8), 3436-3446. http://doi.org/10.1109/TII.2017.2777460 DOI: https://doi.org/10.1109/TII.2017.2777460

Nikolopoulos, K., Litsa, A., Petropoulos, F., Bougioukos, V., & Khammash, M. (2015). Relative performance of methods for forecasting special events. Journal of Business Research, 68(8), 1785-1791. https://doi.org/10.1016/j.jbusres.2015.03.037 DOI: https://doi.org/10.1016/j.jbusres.2015.03.037

Mancuzo, F. (2003). Análise e previsão de demanda: estudo de caso em uma empresa distribuidora de rolamentos. [Dissertação de mestrado] Escola de Engenharia, Universidade Federal do Rio Grande do Sul. http://www.producao.ufrgs.br/arquivos/publicacoes/Fernando%20Mancuzo.pdf

Petropoulos, F., Kourentzes, N., Nikolopoulos, K., & Siemsen, E. (2018). Judgmental selection of forecasting models. Journal of Operations Management, 60, 34-46. https://doi.org/10.1016/j.jom.2018.05.005 DOI: https://doi.org/10.1016/j.jom.2018.05.005

Qiu, X., Ren, Y., Suganthan, P. N., & Amaratunga, G. A. J. (2017). Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Applied Soft Computing, 54, 246-255. https://doi.org/10.1016/j.asoc.2017.01.015 DOI: https://doi.org/10.1016/j.asoc.2017.01.015

Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, 1352-1372. https://doi.org/10.1016/j.rser.2015.04.065 DOI: https://doi.org/10.1016/j.rser.2015.04.065

Ren, Y., Suganthan, P. N., Srikanth, N., & Amaratunga, G. (2016). Random vector functional link network for short-term electricity load demand forecasting. Information Sciences, 367-368, 1078-1093. https://doi.org/10.1016/j.ins.2015.11.039 DOI: https://doi.org/10.1016/j.ins.2015.11.039

Seifert, M., Siemsen, E., Hadida, A. L., & Eisingerich, A. (2015). Effective judgmental forecasting in the context of fashion products. Journal of Operations Management, 36, 33-45. https://doi.org/10.1016/j.jom.2015.02.001 DOI: https://doi.org/10.1016/j.jom.2015.02.001

Sellitto, M. A., & Luchese, J. (2018). Systemic cooperative actions among competitors: The case of a furniture cluster in Brazil. Journal of Industry, Competition and Trade, 18(4), 513-528. https://doi.org/10.1007/s10842-018-0272-9 DOI: https://doi.org/10.1007/s10842-018-0272-9

Sellitto, M. A., Balugani, E., & Lolli, F. (2018). Spare parts replacement policy based on chaotic models. IFAC-PapersOnLine, 51(11), 945-950. https://doi.org/10.1016/j.ifacol.2018.08.486 DOI: https://doi.org/10.1016/j.ifacol.2018.08.486

Sellitto, M. A., Luchese, J., Bauer, J. M., Saueressig, G. G., & Viegas, C. V. (2017). Ecodesign practices in a furniture industrial cluster of southern Brazil: From incipient practices to improvement. Journal of Environmental Assessment Policy and Management, 19(1), 1750001-1750025. https://doi.org/10.1142/S1464333217500016 DOI: https://doi.org/10.1142/S1464333217500016

Shaikh, F., & Ji, Q. (2016). Forecasting natural gas demand in China: Logistic modelling analysis. International Journal of Electrical Power and Energy Systems, 77, 25-32. https://doi.org/10.1016/j.ijepes.2015.11.013 DOI: https://doi.org/10.1016/j.ijepes.2015.11.013

Stüker, T. A. (2014). Modelo para atualização da previsão de demanda em cadeia de suprimentos de moda rápida na indústria calçadista. [Dissertação de mestrado]. Repositório digital da biblioteca Unisinos. http://www.repositorio.jesuita.org.br/handle/UNISINOS/3585

Syntetos, A. A., Babai, M. Z., & Gardner Jr., E. S. (2015). Forecasting intermittent inventory demands: Simple parametric methods vs. bootstrapping. Journal of Business Research, 68(8), 1746-1752. https://doi.org/10.1016/j.jbusres.2015.03.034 DOI: https://doi.org/10.1016/j.jbusres.2015.03.034

Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. Systems, Man and Cybernetics, 15(1), 116-132. http://doi.org/10.1109/TSMC.1985.6313399 DOI: https://doi.org/10.1109/TSMC.1985.6313399

Tapia Cortez, C. A., Hitch, M., Sammut, C., Coulton, J., Shishko, R., & Saydam, S. (2018). Determining the embedding parameters governing long-term dynamics of copper prices. Chaos, Solitons & Fractals, 111, 186-197. https://doi.org/10.1016/j.chaos.2018.03.032 DOI: https://doi.org/10.1016/j.chaos.2018.03.032

Tapia Cortez, C. A., Saydam, S., Coulton, J., & Sammut, C. (2018) Alternative techniques for forecasting mineral commodity prices. International Journal of Mining Science and Technology, 28(2), 309-322. https://doi.org/10.1016/j.ijmst.2017.09.001 DOI: https://doi.org/10.1016/j.ijmst.2017.09.001

Tongal, H., & Berndtsson, R. (2017). Impact of complexity on daily and multi-step forecasting of streamflow with chaotic, stochastic, and black-box models. Stochastic Environmental Research and Risk Assessment, 31(3), 661-682. https://doi.org/10.1007/s00477-016-1236-4 DOI: https://doi.org/10.1007/s00477-016-1236-4

Tratar, L. F. (2015). Forecasting method for noisy demand. International Journal of Production Economics, 161, 64-73. https://doi.org/10.1016/j.ijpe.2014.11.019 DOI: https://doi.org/10.1016/j.ijpe.2014.11.019

Tratar, L. F., Mojškerc, B., & Toman, A. (2016). Demand forecasting with four-parameter exponential smoothing. International Journal of Production Economics, 181(A), 162-173. https://doi.org/10.1016/j.ijpe.2016.08.004 DOI: https://doi.org/10.1016/j.ijpe.2016.08.004

Van der Laan, E., van Dalen, J., Rohrmoser, M., & Simpson, R. (2016). Demand forecasting and order planning for humanitarian logistics: An empirical assessment. Journal of Operations Management, 45, 114-122. https://doi.org/10.1016/j.jom.2016.05.004 DOI: https://doi.org/10.1016/j.jom.2016.05.004

Villani, M., Earnest, A., Nanayakkara, N., Smith, K., de Courten, B., & Zoungas, S. (2017). Time series modelling to forecast prehospital EMS demand for diabetic emergencies. BMC Health Services Research, 17(1), 332. https://doi.org/10.1186/s12913-017-2280-6 DOI: https://doi.org/10.1186/s12913-017-2280-6

Von Briel, F. (2018). The future of omnichannel retail: A four-stage Delphi study. Technological Forecasting and Social Change, 132, 217-229. https://doi.org/10.1016/j.techfore.2018.02.004 DOI: https://doi.org/10.1016/j.techfore.2018.02.004

Wang, Q., Li, S., & Li, R. (2018). Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques. Energy, 161, 821-831. https://doi.org/10.1016/j.energy.2018.07.168 DOI: https://doi.org/10.1016/j.energy.2018.07.168

Wang, W., Chau, K., Xu, D., & Chen, X. (2015). Improving forecasting accuracy of annual runoff time series using Arima based on EEMD decomposition. Water Resources Management, 29(8), 2655-2675. https://doi.org/10.1007/s11269-015-0962-6 DOI: https://doi.org/10.1007/s11269-015-0962-6

Wee, B. V., & Banister, D. (2016). How to write a literature review paper? Transport Reviews, 36(2), 278-288. https://doi.org/10.1080/01441647.2015.1065456 DOI: https://doi.org/10.1080/01441647.2015.1065456

Wu, D. C., Song, H., & Shen, S. (2017). New developments in tourism and hotel demand modeling and forecasting. International Journal of Contemporary Hospitality Management, 29(1), 507-529. https://doi.org/10.1108/IJCHM-05-2015-0249 DOI: https://doi.org/10.1108/IJCHM-05-2015-0249

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Zhu, T., Luo, L., Zhang, X., Shi, Y., & Shen, W. (2015). Time-series approaches for forecasting the number of hospital daily discharged inpatients. IEEE Journal of Biomedical and Health Informatics, 21(2), 515-526. DOI: 10.1109/JBHI.2015.2511820 DOI: https://doi.org/10.1109/JBHI.2015.2511820

Zupic, I. & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629

Cómo citar

APA

Ackermann, A. E. F. . y Sellitto, M. A. . (2022). Métodos de previsão de demanda: uma revisão da literatura. Innovar, 32(85), 83–99. https://doi.org/10.15446/innovar.v32n85.100979

ACM

[1]
Ackermann, A.E.F. y Sellitto, M.A. 2022. Métodos de previsão de demanda: uma revisão da literatura. Innovar. 32, 85 (jul. 2022), 83–99. DOI:https://doi.org/10.15446/innovar.v32n85.100979.

ACS

(1)
Ackermann, A. E. F. .; Sellitto, M. A. . Métodos de previsão de demanda: uma revisão da literatura. Innovar 2022, 32, 83-99.

ABNT

ACKERMANN, A. E. F. .; SELLITTO, M. A. . Métodos de previsão de demanda: uma revisão da literatura. Innovar, [S. l.], v. 32, n. 85, p. 83–99, 2022. DOI: 10.15446/innovar.v32n85.100979. Disponível em: https://revistas.unal.edu.co/index.php/innovar/article/view/100979. Acesso em: 23 abr. 2025.

Chicago

Ackermann, Andres E. F., y Miguel A. Sellitto. 2022. «Métodos de previsão de demanda: uma revisão da literatura». Innovar 32 (85):83-99. https://doi.org/10.15446/innovar.v32n85.100979.

Harvard

Ackermann, A. E. F. . y Sellitto, M. A. . (2022) «Métodos de previsão de demanda: uma revisão da literatura», Innovar, 32(85), pp. 83–99. doi: 10.15446/innovar.v32n85.100979.

IEEE

[1]
A. E. F. . Ackermann y M. A. . Sellitto, «Métodos de previsão de demanda: uma revisão da literatura», Innovar, vol. 32, n.º 85, pp. 83–99, jul. 2022.

MLA

Ackermann, A. E. F. ., y M. A. . Sellitto. «Métodos de previsão de demanda: uma revisão da literatura». Innovar, vol. 32, n.º 85, julio de 2022, pp. 83-99, doi:10.15446/innovar.v32n85.100979.

Turabian

Ackermann, Andres E. F., y Miguel A. Sellitto. «Métodos de previsão de demanda: uma revisão da literatura». Innovar 32, no. 85 (julio 1, 2022): 83–99. Accedido abril 23, 2025. https://revistas.unal.edu.co/index.php/innovar/article/view/100979.

Vancouver

1.
Ackermann AEF, Sellitto MA. Métodos de previsão de demanda: uma revisão da literatura. Innovar [Internet]. 1 de julio de 2022 [citado 23 de abril de 2025];32(85):83-99. Disponible en: https://revistas.unal.edu.co/index.php/innovar/article/view/100979

Descargar cita

CrossRef Cited-by

CrossRef citations11

1. Yasniel Sánchez-Suárez, Verenice Sánchez-Castillo, Arialys Hernández-Nariño. (2024). Gestión de trayectorias de pacientes basada en procesos y variables clave. Caso Cirugía General. Respuestas, 29(2) https://doi.org/10.22463/0122820X.4892.

2. Ilana Barroso Kessous, Beatriz de Oliveira Dos Santos, Magno de Oliveira Silva, Allan Jonathan Da Silva. (2024). Avaliação de métodos de séries temporais para a previsão de demanda no mercado de pneus. Revista de Gestão e Secretariado, 15(2), p.e3549. https://doi.org/10.7769/gesec.v15i2.3549.

3. Catarina Cristino, Susana Nicola, Joaquim Costa, Nuno Bettencourt, Ana Madureira, Ivo Pereira, Alberto Costa. (2024). Optimization strategies in SEI: An analysis of SARIMA and additive Holt-Winters models. 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON). , p.1327. https://doi.org/10.1109/MELECON56669.2024.10608496.

4. Diego Ottoni De Araújo, Paulo Fernando Marschner, Eduardo Amadeu Dutra Moresi. (2025). Trends and research fronts in fuel consumption forecasting: a bibliometric analysis. Latin American Journal of Energy Research, 12(1), p.40. https://doi.org/10.21712/lajer.2025.v12.n1.p40-52.

5. André Luiz Emmel Silva, JORGE ANDRÉ RIBAS MORAES, SILVIO CESAR FERREIRA ROSA, MARÍNDIA DA SILVEIRA MOURA. (2024). PROPOSTA DE UM MODELO DE PREVISÃO DE DEMANDA PARA UMA EMPRESA DE EQUIPAMENTOS ALIMENTÍCIOS INDUSTRIAIS. Revista de Estudos Interdisciplinares , 6(2), p.01. https://doi.org/10.56579/rei.v6i2.1153.

6. João M. Cardoso, Paulo Leitão, Carla A. S. Geraldes. (2024). Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems. Lecture Notes in Mechanical Engineering. , p.1049. https://doi.org/10.1007/978-3-031-38165-2_120.

7. Sayuri Arleth Renatta Ludeña Román, Sebastian Zelada Collazos, Jorge Antonio Corzo Chavez. (2024). Model for Reducing Mean Absolute Percentage Error through Smoothing and Time Series Forecasting In a Tourism SME: A Case Study . Journal of Machine Intelligence and Data Science, 5 https://doi.org/10.11159/jmids.2024.012.

8. Naoual Bouhtati, Lhoussaine Alla, Ikram Ed-Daakouri. (2024). Promoting Responsible Tourism With Digital Platforms. Advances in Hospitality, Tourism, and the Services Industry. , p.189. https://doi.org/10.4018/979-8-3693-3286-3.ch011.

9. Melry Silva de Almeida, Milton Vieira Junior, Carlos Américo de Souza Silva, Anderson da Silva Ferreira. (2025). USE OF LEAN METHODOLOGY AND TOOLS IN PRODUCTION MANAGEMENT TO IMPROVE THE EFFICIENCY OF THE PRODUCTION PROCESS - CASE STUDY IN A PIM COMPANY. Revista de Gestão e Secretariado, 16(3), p.e4722. https://doi.org/10.7769/gesec.v16i3.4722.

10. Caroline Cipolatto Ferrão, Jorge André Ribas Moraes, Leandro Pinto Fava, João Carlos Furtado, Enio Machado, Adriane Rodrigues, Miguel Afonso Sellitto. (2024). Optimizing routes of municipal waste collection: an application algorithm. Management of Environmental Quality: An International Journal, 35(5), p.965. https://doi.org/10.1108/MEQ-08-2023-0267.

11. Gabryelly Macionila Costa de Araújo, Anderson Luís da Silva, Helen Silva Gonçalves, Ana Maria Magalhães Correia. (2024). Management of Micro and Small Enterprises (MPEs): Sales Forecasting in the Retail Sector. Revista de Gestão Social e Ambiental, 18(9), p.e08295. https://doi.org/10.24857/rgsa.v18n9-170.

Dimensions

PlumX

  • Citations
  • Scopus - Citation Indexes: 5
  • Usage
  • SciELO - Abstract Views: 150
  • SciELO - Full Text Views: 110
  • Captures
  • Mendeley - Readers: 30
  • Mendeley - Readers: 25

Visitas a la página del resumen del artículo

2385

Descargas