Métodos de previsão de demanda: uma revisão da literatura
Demand Forecasting Methods: A Literature Review
Métodos de predicción de demanda: una revisión de la literatura
DOI:
https://doi.org/10.15446/innovar.v32n85.100979Palabras clave:
métodos de previsão de demanda, previsão, previsão de demanda, revisão (pt)métodos de predicción de demanda, previsión, revisión, previsión de demanda (es)
Demand forecasting methods, forecasting, demand forecasting, literature review (en)
a previsão de demanda é uma metodologia da administração de empresas para estimar um valor futuro de uma grandeza de interesse. Realizar previsões de demanda significa reconhecer padrões de comportamento em séries históricas e predizer o comportamento futuro ou, ainda, identificar fatores causais que afetam o comportamento e extrapolá-lo. Este artigo tem por objetivo realizar uma revisão da literatura dos métodos de previsão de demanda com o propósito de reunir os métodos e os modelos disponíveis acerca dos conceitos utilizados atualmente na administração de empresas relacionados ao consumo e à produção de produtos e serviços. A metodologia utilizada é a revisão da literatura com abordagem qualitativa, com o propósito de dar uma visão descritiva geral dos métodos dominantes utilizados em previsão de demanda. Foi realizado o mapeamento da literatura para identificar o estado da ciência por meio da produção científica disponível nos bancos de dados Scopus e Google Scholar. Os métodos qualitativos e os causais estão mais bem associados a previsões de médio e longo prazos. A análise de séries temporais bem como os métodos dos diversos tipos de médias e de suavização exponencial são indicados como os mais adequados para previsões de curto prazo. Um recurso utilizado em diversas realidades é a construção de um modelo próprio de previsão de demanda, o qual utilize técnicas, aspectos, conceitos e características de diferentes métodos e modelos. É fundamental monitorar o modelo adotado, manter os dados de campo e de previsão sob controle e, se houver desvios, corrigir o modelo.
Demand forecasting is a business management methodology for estimating the future value of customer demand. Making this type of forecast means recognizing behavior patterns in historical series and predicting future behaviors, or even identifying and extrapolating causal factors that affect market behavior. Hence, this article aims to review the literature on demand forecasting methods in order to gather the methods and models currently used in business administration related to the consumption and production of goods and services. A qualitative literature review was implemented with the purpose of providing a general descriptive view of the dominant methods used in demand forecasting. A mapping of the available literature was conducted to build the state of the art on the topic through the scientific production included in Scopus and Google Scholar databases. Results show that qualitative and causal methods are better associated with medium and long-term forecasts. In addition, the analysis of time series and the methods of the diverse types of averages and exponential smoothing are mentioned as the most suitable for short-term forecasts. A resource that is commonly deployed is the construction of specific demand forecast models, using techniques, aspects, concepts and characteristics from different methods and models. However, it is important to monitor the adopted model, keep field and forecast data under control, and, in case of deviations, correct the model.
La predicción de demanda es una metodología de la administración de empresas para estimar un valor futuro de una grandeza de interés. Realizar predicción de demanda significa reconocer estándares de conducta en series históricas y predecir la conducta o, aun, identificar factores causales que afectan la conducta y extrapolarla. El artículo tiene el propósito realizar una revisión de la literatura de los métodos de predicción de demanda con el fin de reunir los métodos y modelos disponibles acerca de los conceptos utilizados actualmente en la administración de empresas relacionados al consumo y producción de productos y servicios. La metodología utilizada es la revisión de la literatura con enfoque cualitativo, con el propósito de dar una visión descriptiva general de los métodos dominantes utilizados en predicción de demanda. Se realizó el mapeo de la literatura para identificar el estado de la ciencia por medio de la producción científica disponible en los bancos de datos Scopus y Google Scholar. El análisis de series temporales, así como los métodos de los diversos tipos de medianas y suavización exponencial se indican como los más adecuados para predicciones de corto plazo. Un recurso utilizado en diversas realidades es la construcción de un modelo propio de predicción de demanda, que utilice técnicas, aspectos, conceptos y características de diferentes métodos y modelos. Es fundamental monitorear el modelo adoptado, mantener los datos de campo y predicción bajo control y, si hubo desviaciones, corregir el modelo.
Referencias
Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F. M., Preen, D. B., Stewart, L. M., & Fatovich, D. M. (2015). A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in western Australia. Journal of Biomedical Informatics, 57, 62-73. https://doi.org/10.1016/j.jbi.2015.06.022 DOI: https://doi.org/10.1016/j.jbi.2015.06.022
Afilal, M., Yalaoui, F., Dugardin, F., Amodeo, L., Laplanche, D., & Blua, B. (2016). Forecasting the emergency department patients flow. Journal of Medical Systems, 40(7), 175. https://doi.org/10.1007/s10916-016-0527-0 DOI: https://doi.org/10.1007/s10916-016-0527-0
Aizenberg, I., Sheremetov, L., Villa-Vargas, L., & Martinez-Muñoz, J. (2016). Multilayer neural network with multi-valued neurons in time series forecasting of oil production. Neurocomputing, 175(B), 980-989. https://doi.org/10.1016/j.neucom.2015.06.092 DOI: https://doi.org/10.1016/j.neucom.2015.06.092
Armstrong, J., & Green, K. (2019, 26 abril). Demand forecasting evidence-based methods. https://www.researchgate.net/publication/5179920_Demand_Forecasting_Evidence-Based_Methods/link/02e7e5225d7d061e2d000000/download
Arvan, M., Fahimnia, B., Reisi, M., & Siemsen, E. (2019). Integrating human judgement into quantitative forecasting methods: A review. Omega, 86, 237-252. https://doi.org/10.1016/j.omega.2018.07.012 DOI: https://doi.org/10.1016/j.omega.2018.07.012
Boroojeni, K. G., Amini, M. H., Bahrami, S., Iyengar, S. S., Sarwat, A. I., & Karabasoglu, O. (2017). A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon. Electric Power Systems Research, 142, 58-73. https://doi.org/10.1016/j.epsr.2016.08.031 DOI: https://doi.org/10.1016/j.epsr.2016.08.031
Brentan, B. M., Luvizotto Jr, E., Herrera, M., Izquierdo, J., & Pérez-García, R. (2017). Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309, 532-541. https://doi.org/10.1016/j.cam.2016.02.009 DOI: https://doi.org/10.1016/j.cam.2016.02.009
Carvalho-Silva, M., Monteiro, M. T. T., Sá-Soares, F., & Dória-Nóbrega, S. (2018). Assessment of forecasting models for patients arrival at emergency department. Operations Research for Health Care, 18, 112-118. https://doi.org/10.1016/j.orhc.2017.05.001 DOI: https://doi.org/10.1016/j.orhc.2017.05.001
Chae, Y. T., Horesh, R., Hwang, Y., & Lee, Y. M. (2016). Artificial neural network model for forecasting sub-hourly electricity usage in commercial buildings. Energy and Buildings, 111, 184-194. https://doi.org/10.1016/j.enbuild.2015.11.045 DOI: https://doi.org/10.1016/j.enbuild.2015.11.045
De Löe, R. C., Melnychuk, N., Murray, D., & Plummer, R. (2016). Advancing the state of policy delphi practice: A systematic review evaluating methodological evolution, innovation, and opportunities. Technological Forecasting and Social Change, 104, 78-88. https://doi.org/10.1016/j.techfore.2015.12.009 DOI: https://doi.org/10.1016/j.techfore.2015.12.009
Deb, C., Zhang, F., Yang, J., Lee, S. E., & Shah, K. W. (2017). A review on time series forecasting techniques for building energy consumption. Renewable and Sustainable Energy Reviews, 74, 902-924. https://doi.org/10.1016/j.rser.2017.02.085 DOI: https://doi.org/10.1016/j.rser.2017.02.085
Efendi, R., Ismail, Z., & Deris, M. M. (2015). A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand. Applied Soft Computing, 28, 422-430. https://doi.org/10.1016/j.asoc.2014.11.043 DOI: https://doi.org/10.1016/j.asoc.2014.11.043
Fang, T., & Lahdelma, R. (2016). Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system. Applied Energy, 179, 544-552. https://doi.org/10.1016/j.apenergy.2016.06.133 DOI: https://doi.org/10.1016/j.apenergy.2016.06.133
Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an online retailer: Demand forecasting and price optimization. Manufacturing and Service Operations Management, 18(1), 69-88. https://doi.org/10.1287/msom.2015.0561 DOI: https://doi.org/10.1287/msom.2015.0561
Fiot, J., & Dinuzzo, F. (2016). Electricity demand forecasting by multi-task learning. IEEE Transactions on Smart Grid, 9(2), 544-551. http://doi.org/10.1109/TSG.2016.2555788 DOI: https://doi.org/10.1109/TSG.2016.2555788
Fortsch, S. M., & Khapalova, E. A. (2016). Reducing uncertainty in demand for blood. Operations Research for Health Care, 9, 16-28. https://doi.org/10.1016/j.orhc.2016.02.002 DOI: https://doi.org/10.1016/j.orhc.2016.02.002
Green, K. C., & Armstrong, J. S. (2015). Simple versus complex forecasting: The evidence. Journal of Business Research, 68(8), 1678-1685. https://doi.org/10.1016/j.jbusres.2015.03.026 DOI: https://doi.org/10.1016/j.jbusres.2015.03.026
Guo, H., Pedrycz, W., & Liu, X. (2018). Fuzzy time series forecasting based on axiomatic fuzzy set theory. Neural Computing and Applications, 31, 3921-3932. https://doi.org/10.1007/s00521-017-3325-9 DOI: https://doi.org/10.1007/s00521-017-3325-9
Jamil, M., & Zeeshan, M. (2018). A comparative analysis of ANN and chaotic approach-based wind speed prediction in India. Neural Computing and Applications, 31, 6807-6819. https://doi.org/10.1007/s00521-018-3513-2 DOI: https://doi.org/10.1007/s00521-018-3513-2
Joo, T. W., & Kim, S. B. (2015). Time series forecasting based on wavelet filtering. Expert Systems with Applications, 42(8), 3868-3874. https://doi.org/10.1016/j.eswa.2015.01.026 DOI: https://doi.org/10.1016/j.eswa.2015.01.026
Jun, S.-P., Sung, T.-E, & Park, H.-W. (2017). Forecasting by analogy using the web search traffic. Technological Forecasting and Social Change, 115, 37-51. https://doi.org/10.1016/j.techfore.2016.09.014 DOI: https://doi.org/10.1016/j.techfore.2016.09.014
Katsikopoulos, K. V., Durbach, I. A., & Stewart, T. J. (2018). When should we use simple decision models? A synthesis of various research strands. Omega, 81, 17-25. https://doi.org/10.1016/j.omega.2017.09.005 DOI: https://doi.org/10.1016/j.omega.2017.09.005
Ke, J., Zheng, H., Yang, H., & Chen, X. (2017). Short-term forecasting of passenger demand under on-demand ride services: A spatio-temporal deep learning approach. Transportation Research Part C: Emerging Technologies, 85, 591-608. https://doi.org/10.1016/j.trc.2017.10.016 DOI: https://doi.org/10.1016/j.trc.2017.10.016
Kocak, C. (2017). Arma (p, q) type high order fuzzy time series forecast method based on fuzzy logic relations. Applied Soft Computing, 58, 92-103. https://doi.org/10.1016/j.asoc.2017.04.021 DOI: https://doi.org/10.1016/j.asoc.2017.04.021
Kudlak, R., Szöcs, I., Krumay, B., & Martinuzzi, A. (2018). The future of CSR — Selected findings from a Europe-wide Delphi study. Journal of Cleaner Production, 183, 282-291. https://doi.org/10.1016/j.jclepro.2018.02.119 DOI: https://doi.org/10.1016/j.jclepro.2018.02.119
Li, X., Pan, B., Law, R., & Huang, X. (2017). Forecasting tourism demand with composite search index. Tourism Management, 59, 57-66. https://doi.org/10.1016/j.tourman.2016.07.005 DOI: https://doi.org/10.1016/j.tourman.2016.07.005
Lucas, A., & Zhang, X. (2016). Score-driven exponentially weighted moving averages and value-at-risk forecasting. International Journal of Forecasting, 32(2), 293-302. https://doi.org/10.1016/j.ijforecast.2015.09.003 DOI: https://doi.org/10.1016/j.ijforecast.2015.09.003
Luo, L., Luo, L., Zhang, X., & He, X. (2017) Hospital daily outpatient visits forecasting using a combinatorial model based on Arima and SES models. BMC Health Services Research, 17(1), 1-13. https://doi.org/10.1186/s12913-017-2407-9 DOI: https://doi.org/10.1186/s12913-017-2407-9
Lv, C., Xing, Y., Zhang, J., Na, X., Li, Y., Liu, T., Cao, D. & Wang, F.-Y. (2017). Levenberg-marquardt backpropagation training of multilayer neural network for state estimation of a safety-critical cyber-physical system. IEEE Transactions on Industrial Informatics, 14(8), 3436-3446. http://doi.org/10.1109/TII.2017.2777460 DOI: https://doi.org/10.1109/TII.2017.2777460
Nikolopoulos, K., Litsa, A., Petropoulos, F., Bougioukos, V., & Khammash, M. (2015). Relative performance of methods for forecasting special events. Journal of Business Research, 68(8), 1785-1791. https://doi.org/10.1016/j.jbusres.2015.03.037 DOI: https://doi.org/10.1016/j.jbusres.2015.03.037
Mancuzo, F. (2003). Análise e previsão de demanda: estudo de caso em uma empresa distribuidora de rolamentos. [Dissertação de mestrado] Escola de Engenharia, Universidade Federal do Rio Grande do Sul. http://www.producao.ufrgs.br/arquivos/publicacoes/Fernando%20Mancuzo.pdf
Petropoulos, F., Kourentzes, N., Nikolopoulos, K., & Siemsen, E. (2018). Judgmental selection of forecasting models. Journal of Operations Management, 60, 34-46. https://doi.org/10.1016/j.jom.2018.05.005 DOI: https://doi.org/10.1016/j.jom.2018.05.005
Qiu, X., Ren, Y., Suganthan, P. N., & Amaratunga, G. A. J. (2017). Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Applied Soft Computing, 54, 246-255. https://doi.org/10.1016/j.asoc.2017.01.015 DOI: https://doi.org/10.1016/j.asoc.2017.01.015
Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy Reviews, 50, 1352-1372. https://doi.org/10.1016/j.rser.2015.04.065 DOI: https://doi.org/10.1016/j.rser.2015.04.065
Ren, Y., Suganthan, P. N., Srikanth, N., & Amaratunga, G. (2016). Random vector functional link network for short-term electricity load demand forecasting. Information Sciences, 367-368, 1078-1093. https://doi.org/10.1016/j.ins.2015.11.039 DOI: https://doi.org/10.1016/j.ins.2015.11.039
Seifert, M., Siemsen, E., Hadida, A. L., & Eisingerich, A. (2015). Effective judgmental forecasting in the context of fashion products. Journal of Operations Management, 36, 33-45. https://doi.org/10.1016/j.jom.2015.02.001 DOI: https://doi.org/10.1016/j.jom.2015.02.001
Sellitto, M. A., & Luchese, J. (2018). Systemic cooperative actions among competitors: The case of a furniture cluster in Brazil. Journal of Industry, Competition and Trade, 18(4), 513-528. https://doi.org/10.1007/s10842-018-0272-9 DOI: https://doi.org/10.1007/s10842-018-0272-9
Sellitto, M. A., Balugani, E., & Lolli, F. (2018). Spare parts replacement policy based on chaotic models. IFAC-PapersOnLine, 51(11), 945-950. https://doi.org/10.1016/j.ifacol.2018.08.486 DOI: https://doi.org/10.1016/j.ifacol.2018.08.486
Sellitto, M. A., Luchese, J., Bauer, J. M., Saueressig, G. G., & Viegas, C. V. (2017). Ecodesign practices in a furniture industrial cluster of southern Brazil: From incipient practices to improvement. Journal of Environmental Assessment Policy and Management, 19(1), 1750001-1750025. https://doi.org/10.1142/S1464333217500016 DOI: https://doi.org/10.1142/S1464333217500016
Shaikh, F., & Ji, Q. (2016). Forecasting natural gas demand in China: Logistic modelling analysis. International Journal of Electrical Power and Energy Systems, 77, 25-32. https://doi.org/10.1016/j.ijepes.2015.11.013 DOI: https://doi.org/10.1016/j.ijepes.2015.11.013
Stüker, T. A. (2014). Modelo para atualização da previsão de demanda em cadeia de suprimentos de moda rápida na indústria calçadista. [Dissertação de mestrado]. Repositório digital da biblioteca Unisinos. http://www.repositorio.jesuita.org.br/handle/UNISINOS/3585
Syntetos, A. A., Babai, M. Z., & Gardner Jr., E. S. (2015). Forecasting intermittent inventory demands: Simple parametric methods vs. bootstrapping. Journal of Business Research, 68(8), 1746-1752. https://doi.org/10.1016/j.jbusres.2015.03.034 DOI: https://doi.org/10.1016/j.jbusres.2015.03.034
Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. Systems, Man and Cybernetics, 15(1), 116-132. http://doi.org/10.1109/TSMC.1985.6313399 DOI: https://doi.org/10.1109/TSMC.1985.6313399
Tapia Cortez, C. A., Hitch, M., Sammut, C., Coulton, J., Shishko, R., & Saydam, S. (2018). Determining the embedding parameters governing long-term dynamics of copper prices. Chaos, Solitons & Fractals, 111, 186-197. https://doi.org/10.1016/j.chaos.2018.03.032 DOI: https://doi.org/10.1016/j.chaos.2018.03.032
Tapia Cortez, C. A., Saydam, S., Coulton, J., & Sammut, C. (2018) Alternative techniques for forecasting mineral commodity prices. International Journal of Mining Science and Technology, 28(2), 309-322. https://doi.org/10.1016/j.ijmst.2017.09.001 DOI: https://doi.org/10.1016/j.ijmst.2017.09.001
Tongal, H., & Berndtsson, R. (2017). Impact of complexity on daily and multi-step forecasting of streamflow with chaotic, stochastic, and black-box models. Stochastic Environmental Research and Risk Assessment, 31(3), 661-682. https://doi.org/10.1007/s00477-016-1236-4 DOI: https://doi.org/10.1007/s00477-016-1236-4
Tratar, L. F. (2015). Forecasting method for noisy demand. International Journal of Production Economics, 161, 64-73. https://doi.org/10.1016/j.ijpe.2014.11.019 DOI: https://doi.org/10.1016/j.ijpe.2014.11.019
Tratar, L. F., Mojškerc, B., & Toman, A. (2016). Demand forecasting with four-parameter exponential smoothing. International Journal of Production Economics, 181(A), 162-173. https://doi.org/10.1016/j.ijpe.2016.08.004 DOI: https://doi.org/10.1016/j.ijpe.2016.08.004
Van der Laan, E., van Dalen, J., Rohrmoser, M., & Simpson, R. (2016). Demand forecasting and order planning for humanitarian logistics: An empirical assessment. Journal of Operations Management, 45, 114-122. https://doi.org/10.1016/j.jom.2016.05.004 DOI: https://doi.org/10.1016/j.jom.2016.05.004
Villani, M., Earnest, A., Nanayakkara, N., Smith, K., de Courten, B., & Zoungas, S. (2017). Time series modelling to forecast prehospital EMS demand for diabetic emergencies. BMC Health Services Research, 17(1), 332. https://doi.org/10.1186/s12913-017-2280-6 DOI: https://doi.org/10.1186/s12913-017-2280-6
Von Briel, F. (2018). The future of omnichannel retail: A four-stage Delphi study. Technological Forecasting and Social Change, 132, 217-229. https://doi.org/10.1016/j.techfore.2018.02.004 DOI: https://doi.org/10.1016/j.techfore.2018.02.004
Wang, Q., Li, S., & Li, R. (2018). Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques. Energy, 161, 821-831. https://doi.org/10.1016/j.energy.2018.07.168 DOI: https://doi.org/10.1016/j.energy.2018.07.168
Wang, W., Chau, K., Xu, D., & Chen, X. (2015). Improving forecasting accuracy of annual runoff time series using Arima based on EEMD decomposition. Water Resources Management, 29(8), 2655-2675. https://doi.org/10.1007/s11269-015-0962-6 DOI: https://doi.org/10.1007/s11269-015-0962-6
Wee, B. V., & Banister, D. (2016). How to write a literature review paper? Transport Reviews, 36(2), 278-288. https://doi.org/10.1080/01441647.2015.1065456 DOI: https://doi.org/10.1080/01441647.2015.1065456
Wu, D. C., Song, H., & Shen, S. (2017). New developments in tourism and hotel demand modeling and forecasting. International Journal of Contemporary Hospitality Management, 29(1), 507-529. https://doi.org/10.1108/IJCHM-05-2015-0249 DOI: https://doi.org/10.1108/IJCHM-05-2015-0249
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
Zhu, T., Luo, L., Zhang, X., Shi, Y., & Shen, W. (2015). Time-series approaches for forecasting the number of hospital daily discharged inpatients. IEEE Journal of Biomedical and Health Informatics, 21(2), 515-526. DOI: 10.1109/JBHI.2015.2511820 DOI: https://doi.org/10.1109/JBHI.2015.2511820
Zupic, I. & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Yasniel Sánchez-Suárez, Verenice Sánchez-Castillo, Arialys Hernández-Nariño. (2024). Gestión de trayectorias de pacientes basada en procesos y variables clave. Caso Cirugía General. Respuestas, 29(2) https://doi.org/10.22463/0122820X.4892.
2. Ilana Barroso Kessous, Beatriz de Oliveira Dos Santos, Magno de Oliveira Silva, Allan Jonathan Da Silva. (2024). Avaliação de métodos de séries temporais para a previsão de demanda no mercado de pneus. Revista de Gestão e Secretariado, 15(2), p.e3549. https://doi.org/10.7769/gesec.v15i2.3549.
3. Catarina Cristino, Susana Nicola, Joaquim Costa, Nuno Bettencourt, Ana Madureira, Ivo Pereira, Alberto Costa. (2024). Optimization strategies in SEI: An analysis of SARIMA and additive Holt-Winters models. 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON). , p.1327. https://doi.org/10.1109/MELECON56669.2024.10608496.
4. Diego Ottoni De Araújo, Paulo Fernando Marschner, Eduardo Amadeu Dutra Moresi. (2025). Trends and research fronts in fuel consumption forecasting: a bibliometric analysis. Latin American Journal of Energy Research, 12(1), p.40. https://doi.org/10.21712/lajer.2025.v12.n1.p40-52.
5. André Luiz Emmel Silva, JORGE ANDRÉ RIBAS MORAES, SILVIO CESAR FERREIRA ROSA, MARÍNDIA DA SILVEIRA MOURA. (2024). PROPOSTA DE UM MODELO DE PREVISÃO DE DEMANDA PARA UMA EMPRESA DE EQUIPAMENTOS ALIMENTÍCIOS INDUSTRIAIS. Revista de Estudos Interdisciplinares , 6(2), p.01. https://doi.org/10.56579/rei.v6i2.1153.
6. João M. Cardoso, Paulo Leitão, Carla A. S. Geraldes. (2024). Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems. Lecture Notes in Mechanical Engineering. , p.1049. https://doi.org/10.1007/978-3-031-38165-2_120.
7. Sayuri Arleth Renatta Ludeña Román, Sebastian Zelada Collazos, Jorge Antonio Corzo Chavez. (2024). Model for Reducing Mean Absolute Percentage Error through Smoothing and Time Series Forecasting In a Tourism SME: A Case Study . Journal of Machine Intelligence and Data Science, 5 https://doi.org/10.11159/jmids.2024.012.
8. Naoual Bouhtati, Lhoussaine Alla, Ikram Ed-Daakouri. (2024). Promoting Responsible Tourism With Digital Platforms. Advances in Hospitality, Tourism, and the Services Industry. , p.189. https://doi.org/10.4018/979-8-3693-3286-3.ch011.
9. Melry Silva de Almeida, Milton Vieira Junior, Carlos Américo de Souza Silva, Anderson da Silva Ferreira. (2025). USE OF LEAN METHODOLOGY AND TOOLS IN PRODUCTION MANAGEMENT TO IMPROVE THE EFFICIENCY OF THE PRODUCTION PROCESS - CASE STUDY IN A PIM COMPANY. Revista de Gestão e Secretariado, 16(3), p.e4722. https://doi.org/10.7769/gesec.v16i3.4722.
10. Caroline Cipolatto Ferrão, Jorge André Ribas Moraes, Leandro Pinto Fava, João Carlos Furtado, Enio Machado, Adriane Rodrigues, Miguel Afonso Sellitto. (2024). Optimizing routes of municipal waste collection: an application algorithm. Management of Environmental Quality: An International Journal, 35(5), p.965. https://doi.org/10.1108/MEQ-08-2023-0267.
11. Gabryelly Macionila Costa de Araújo, Anderson Luís da Silva, Helen Silva Gonçalves, Ana Maria Magalhães Correia. (2024). Management of Micro and Small Enterprises (MPEs): Sales Forecasting in the Retail Sector. Revista de Gestão Social e Ambiental, 18(9), p.e08295. https://doi.org/10.24857/rgsa.v18n9-170.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2022 Innovar

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Todos los artículos publicados por Innovar se encuentran disponibles globalmente con acceso abierto y licenciados bajo los términos de Creative Commons Atribución-No_Comercial-Sin_Derivadas 4.0 Internacional (CC BY-NC-ND 4.0).
Una vez seleccionados los artículos para un número, y antes de iniciar la etapa de cuidado y producción editorial, los autores deben firmar una cesión de derechos patrimoniales de su obra. Innovar se ciñe a las normas colombianas en materia de derechos de autor.
El material de esta revista puede ser reproducido o citado con carácter académico, citando la fuente.
Esta obra está bajo una Licencia Creative Commons: