Publicado

2023-07-01

La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática

The Ecological Footprint Applied to Life Cycle Analysis, Corporations, and Cities: A Systematic Review

A pegada ecológica aplicada à análise do ciclo de vida, corporações e cidades: uma revisão sistemática

DOI:

https://doi.org/10.15446/innovar.v34n91.101009

Palabras clave:

análisis de ciclo de vida, ciudad, corporación, huella ecológica, revisión sistemática (es)
Life cycle analysis, city, corporation, ecological footprint, systematic review (en)
análise do ciclo de vida, cidade, corporação, pegada ecológica, revisão sistemática (pt)

Autores/as

La huella ecológica (HE) es un indicador para estimar la superficie productiva requerida en términos de consumo de recursos y asimilación de desechos de una población, la cual se ha adaptado a distintas escalas y propósitos. El objetivo de esta investigación es analizar el concepto, la metodología y las modificaciones de la HE en tres grupos de interés: análisis de ciclo de vida (ACV), corporaciones y ciudades. Se realizó una revisión sistemática de literatura con la base de datos de Scopus, por medio del protocolo PRISMA, desde 1992 al 2021. La búsqueda inicial incluyó 1.353 escritos y se analizaron 42 por su relevancia. Los resultados para los tres ejes de análisis fueron los siguientes: el ACV se 0061linea con la ISO 14040 y se enriquece con la HE; en las corporaciones se utiliza mayormente el método compuesto de cuentas contables (MC3), de acuerdo con el tamaño y giro de la corporación; en las ciudades la problemática es la falta de información específica para medirla. Se identificó que el concepto original de HE de Wackernagel y Rees es el más citado. La contribución principal de este trabajo es dar cuenta de las adaptaciones del concepto a ACV, corporaciones y ciudades, mostrando su vigencia como indicador. Los resultados se limitan a una sola base de datos para la revisión.

The ecological footprint (EF) is an indicator used to estimate the productive land required in terms of resource consumption and waste assimilation for a population that has been adapted to different scales and purposes. The objective of this research is to analyze the concept, methodology, and modifications of the ef in three areas of interest: life cycle analysis (LCA), corporations, and cities. A systematic literature review covering the 1992-2021 period was conducted using the Scopus database and following the prisma protocol. The initial search included 1,353 articles, of which 42 were analyzed for their relevance. The results for the three areas of analysis are as follows. LCA aligns with iso 14040 and is enriched with the ef. In corporations, the most commonly used method is the compound method of accounting (MC3), depending on the size and business sector of the corporation. For cities, there is an issue related to the lack of specific information for measurement. It was identified that the original concept of EF by Wackernagel and Rees is the most cited. The main contribution of this research is to account for the adaptations of the concept of ef to LCA, corporations, and cities, showing its relevance as an indicator. As a keynote, our results are limited to a single database for the review.

a pegada ecológica (PE) é um indicador para estimar a superfície produtiva necessária em termos de consumo de recursos e assimilação de resíduos de uma população, que foi adaptada a diferentes escalas e propósitos. O objetivo desta pesquisa é analisar o conceito, a metodologia e as modificações da pegada ecológica em três grupos de interesse: análise do ciclo de vida (ACV), corporações e cidades. Foi realizada uma revisão sistemática da literatura no banco de dados Scopus, usando o protocolo prisma, de 1992 a 2021. A pesquisa inicial incluiu 1.353 artigos e 42 foram analisados quanto à sua relevância. Os resultados para os três eixos de análise foram os seguintes: o ACV está alinhado com a ISO 14040 e é enriquecido com a PE; nas corporações, o método composto pelas contas contábeis (MC3) é mais usado, de acordo com o tamanho e o ramo de negócios da corporação; nas cidades, o problema é a falta de informações específicas para medi-lo. O conceito original de Wackernagel e Rees foi identificado como o mais citado. A principal contribuição deste artigo é apresentar um relato das adaptações do conceito para ACV, corporações e cidades, mostrando sua validade como indicador. Os resultados são limitados a um único banco de dados para a revisão.

Referencias

Almeida, D., Stefanoudis, P. V., Fletcher, D. H., Rangel, C., & Da Silva, E. (2014). Population traits of invasive bleak Alburnus alburnus between different habitats in Iberian fresh waters. Limnologica, 46, 70-76. https://doi.org/10.1016/j.limno.2013.12.003

Álvarez, S., & Rubio, A. (2015). Compound method based on financial accounts versus process-based analysis in product carbon footprint: A comparison using wood pallets. Ecological Indicators, 49, 88-94. https://doi.org/10.1016/j.ecolind.2014.10.005

Baabou, W., Grunewald, N., Ouellet-Plamondon, C., Gressot, M., & Galli, A. (2017). The ecological footprint of Mediterranean cities: Awareness creation and policy implications. Environmental Science & Policy, 69, 94-104. https://doi.org/10.1016/J.ENVSCI.2016.12.013

Belčáková, I., Diviaková, A., & Belaňová, E. (2017). Ecological footprint in relation to climate change strategy in cities. IOP Conference Series: Materials Science and Engineering, 245(6), 062021. https://doi.org/10.1088/1757-899X/245/6/062021

Bernatene, M. R., & Canale, G. J. (2019). Innovación sustentable en Diseño a partir de la integración del análisis de Ciclo de Vida (ACV) con Cadenas Globales de Valor (CGV). Cuadernos del Centro de Estudios de Diseño y Comunicación, 69, 151-174. https://doi.org/10.18682/cdc.vi69.1106

Bravo-Olivas, M. L., & Chávez-Dagostino, R. M. (2020). Sustainable fishing? Ecological footprint analysis of an artisanal fishing organization. The Open Environmental Research Journal, 13(1), 1-10. https://doi.org/10.2174/1874213002013010001

Brunklaus, B., Rex, E., Carlsson, E., & Berlin, J. (2018). The future of Swedish food waste: An environmental assessment of existing and prospective valorization techniques. Journal of Cleaner Production, 202, 1-10. https://doi.org/10.1016/j.jclepro.2018.07.240

Cagiao, J., Gómez, B., Doménech, J. L., Gutiérrez Mainar, S., & Gutiérrez Lanza, H. (2011). Calculation of the corporate carbon footprint of the cement industry by the application of MC3 methodology. Ecological Indicators, 11(6), 1526-1540. https://doi.org/10.1016/j.ecolind.2011.02.013

Campbell, M., McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ, 368. https://doi.org/10.1136/bmj.l6890

Castellani, V., & Sala, S. (2012). Ecological footprint and life cycle assessment in the sustainability assessment of tourism activities. Ecological Indicators, 16, 135-147. https://doi.org/10.1016/j.ecolind.2011.08.002

Doménech, J. L. (2006). Guía metodológica para el cálculo de la huella ecológica corporativa [Ponencia]. Terceros Encuentros Internacionales sobre “Desarrollo sostenible y población” (Universidad de Málaga). Málaga, España. https://elimpactoambiental.files.wordpress.com/2008/11/huella_ecologica_corporativa.pdf

Doménech, J. L., & Carballo, A. (2009). Huella ecológica corporativa. El método compuesto de las cuentas contables (MC3): una alternativa para estimar la huella ecológica de empresas y organizaciones. UAISostenibilidad, 3(4), 34-52. http://www.sustentabilidad.uai.edu.ar/pdf/uaisreview/UAISustentabilidad4.pdf

Ecoil. (s. f.). Análisis del Ciclo de Vida (ACV). http://www.ecoil.tuc.gr/LCA-2_SP.pdf

Elsevier. (2021). Acerca de Elsevier. Consultado el 7 de junio de 2021, en https://www.elsevier.com/es-mx/about

Eurofins. (2021, junio 1). ISO 14040: Análisis del ciclo de vida. Principios y marco de referencia. Eurofins. https://envira.es/es/iso-14040-principios-relacionados-gestion-ambiental/

Ewing, A., Thabrew, L., Perrone, D., Abkowitz, M., & Hornberger, G. (2011). Insights on the use of hybrid life cycle assessment for environmental footprinting. A case study of an Inland Marine Freight Transportation Company. Journal of Industrial Ecology, 15(6), 937-950. https://doi.org/10.1111/j.1530-9290.2011.00374.x

Fiala, N. (2008). Measuring sustainability: Why the ecological footprint is bad economics and bad environmental science. Ecological Economics, 67(4), 519-525. https://doi.org/10.1016/j.ecolecon.2008.07.023

Freitas de Alvarenga, R. A., Da Silva Júnior, V. P., & Soares, S. R. (2012). Comparison of the ecological footprint and a life cycle impact assessment method for a case study on Brazilian broiler feed production. Journal of Cleaner Production, 28, 25-32. https://doi.org/10.1016/j.jclepro.2011.06.023

Galli, A., Iha, K., Moreno Pires, S., Mancini, M. S., Alves, A., Zokai, G., Lin, D., Murthy, A., & Wackernagel, M. (2020). Assessing the ecological footprint and biocapacity of Portuguese cities: Critical results for environmental awareness and local management. Cities, 96. https://doi.org/10.1016/J.CITIES.2019.102442

Google Scholar. (2021). Ecological footprint 1990-2021. En Google Académico. Consultado el 15 de junio de 2021, en https://scholar.google.com/

Google Trends. (2021). Huella ecológica. En Google Trends México. Consultado el 15 de junio de 2021, en https://trends.google.es/trends/?geo=MX

Herva, M., & Roca, E. (2013). Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. Journal of Cleaner Production, 39, 355-371. https://doi.org/10.1016/J.JCLEPRO.2012.07.058

Huijbregts, M. A. J., Hellweg, S., Frischknecht, R., Hungerbühler, K., & Hendriks, A. J. (2008). Ecological footprint accounting in the life cycle assessment of products. Ecological Economics, 64(4), 798-807. https://doi.org/10.1016/j.ecolecon.2007.04.017

Husain, D., Garg, P., & Prakash, R. (2021). Ecological footprint assessment and its reduction for industrial food products. International Journal of Sustainable Engineering, 14(1), 26-38. https://doi.org/10.1080/19397038.2019.1665119

Husain, D., & Prakash, R. (2019). Life cycle ecological footprint assessment of an academic building. Journal of The Institution of Engineers (India): Series A, 100(1), 97-110. https://doi.org/10.1007/s40030-018-0334-3

Kissinger, M., Sussman, C., Moore, J., & Rees, W. E. (2013). Accounting for the ecological footprint of materials in consumer goods at the urban scale. Sustainability, 5(5), 1960-1973. https://doi.org/10.3390/su5051960

Lage Morais, C. R., Cardoso Fernandes, A. R. A., Santos Franco, E., Marques, I. C., & Rodrigues Marques Sakiyama, N. (2020). The ecological footprint of João Monlevade city, Brazil - Conventional Method. IOP Conference Series: Earth and Environmental Science, 588(1), 022025. https://doi.org/10.1088/1755-1315/588/2/022025

Li, B., Hao, L. X., & Liu, H. (2009, junio 11-13). Dynamic analysis on the ecological footprint of Pinggu District, Beijing City [Conference session]. 3rd International Conference on Bioinformatics and Biomedical Engineering, (ICBBE 2009). Beijing, China. https://doi.org/10.1109/ICBBE.2009.5162666

Li, S., Yuan, W., Shi, T. M., & Zhou, L. (2011). Dynamic analysis of ecological footprints of Nanchong City in the process of urbanization. Procedia Engineering, 15, 5415-5419. https://doi.org/10.1016/J.PROENG.2011.08.1004

Liu, H, Wang, X., Yang, J., Zhou, X., & Liu, Y. (2017). The ecological footprint evaluation of low carbon campuses based on life cycle assessment: A case study of Tianjin, China. Journal of Cleaner Production, 144, 266-278. https://doi.org/10.1016/j.jclepro.2017.01.017

Liu, X. T., Sheng, Z. F., & Wang, Y. L. (2011). Study on tourism ecological footprint of Loudi city in Hunan “3+5” urban agglomeration. Applied Mechanics and Materials, 55-57, 1566-1571. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.55-57.1566

Lo-Iacono-Ferreira, V. G., Torregrosa-López, J. I., & Capuz-Rizo, S. F. (2016). Use of Life Cycle Assessment methodology in the analysis of Ecological Footprint Assessment results to evaluate the environmental performance of universities. Journal of Cleaner Production, 133, 43-53. https://doi.org/10.1016/j.jclepro.2016.05.046

Martínez, S., Delgado, M. M., Martínez Marín, R., & Álvarez, S. (2019). Science mapping on the Environmental Footprint: A scientometric analysis-based review. Ecological Indicators, 106, 105543. https://doi.org/10.1016/J.ECOLIND.2019.105543

Mateo-Mantecón, I., Coto-Millán, P., Doménech, J. L., & Pesquera-González, M. (2011). Measurement of the ecological and carbon footprint in Port Authorities: Comparative study. Transportation Research Record: Journal of the Transportation Research Board, 2222(1), 80-84. https://doi.org/10.3141/2222-10

Onat, N. C., Kucukvar, M., & Tatari, O. (2014). Towards life cycle sustainability assessment of alternative passenger vehicles. Sustainability, 6(12), 9305-9342. https://doi.org/10.3390/su6129305

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The prisma 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(89), 1-11. https://doi.org/https://doi.org/10.1186/s13643-021-01626-4

Pickering, C., & Byrne, J. (2014). The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. Higher Education Research and Development, 33(3), 534–548. https://doi.org/10.1080/07294360.2013.841651

PRISMA. (2021). PRISMA Flow Diagram. PRISMA. http://www.prisma-statement.org/PRISMAStatement/FlowDiagram

Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Review. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701-720. https://doi.org/10.1016/j.envint.2003.11.005

Rees, W. (1992). Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environment & Urbanization, 4(2), 121-130. https://doi.org/10.1177/095624789200400212

Rees, W., & Wackernagel, M. (1996). Urban ecological footprints: Why cities cannot be sustainable—And why they are a key to sustainability. Environmental Impact Assessment Review, 16(4-6), 223-248. https://doi.org/10.1016/S0195-9255(96)00022-4

Sai, Y., Cai, J., Li, H., & Wang, W. (2012). Calculation and analysis of ecological footprint on cities of the Poyang Lake Ecological Economic Zone. Advanced Materials Research, 368-373, 3184-3191. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.368-373.3184

Santoso, E. B., & Aulia, B. U. (2018). Ecological sustainability level of Surabaya City based on ecological footprint approach. IOP Conference Series: Earth and Environmental Science, 202(1), 012044. https://doi.org/10.1088/1755-1315/202/1/012044

Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT]. (2012). Huella ecológica, datos y rostros. SEMARNAT. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/Libros2013/CD001598.pdf

Sharma, K., Sharma, S. K., & Mathur, P. (2016). Calculation and analysis of the urban ecological footprint: A case study of Ajmer City, India. Indian Journal of Ecology, 43(1), 50-52.

Shi, Y., Shao, C., & Zhang, Z. (2020). Efficiency and driving factors of green development of tourist cities based on ecological footprint. Sustainability, 12(20), 1-23. https://doi.org/10.3390/SU12208589

Siddiqui, O., & Dincer, I. (2017). Comparative assessment of the environmental impacts of nuclear, wind and hydro-electric power plants in Ontario: A life cycle assessment. Journal of Cleaner Production, 164, 848-860. https://doi.org/10.1016/j.jclepro.2017.06.237

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333-339. https://doi.org/10.1016/J.JBUSRES.2019.07.039

Soares, L., & Chaves, C. (2017). Sustainability and the firm: From the global to the corporate ecological footprint. En L. Zacher (Ed.), Technology, society and sustainability (pp. 397-423). Springer. https://doi.org/10.1007/978-3-319-47164-8_28

Stöglehner, G. (2003). Ecological footprint-a tool for assessing sustainable energy supplies. Journal of Cleaner Production, 11(3), 267-277. https://doi.org/10.1016/S0959-6526(02)00046-X

Sui, L., Yuan, W., Shi, T., & Zhou, L. (2011). Dynamic analysis of ecological footprints of Nanchong City in the process of urbanization. Procedia Engineering, 15, 5415-5419. https://doi.org/10.1016/j.proeng.2011.08.1004

Świąder, M., Lin, D., Szewrański, S., Kazak, J. K., Iha, K., Van Hoof, J., Belčáková, I., & Altiok, S. (2020). The application of ecological footprint and biocapacity for environmental carrying capacity assessment: A new approach for European cities. Environmental Science and Policy, 105, 56-74. https://doi.org/10.1016/J.ENVSCI.2019.12.010

Szennay, Á., Szigeti, C., Beke, J., & Radácsi, L. (2021). Ecological footprint as an indicator of corporate environmental performance — Empirical evidence from hungarian SMEs. Sustainability, 13(2), 1-20. https://doi.org/10.3390/su13021000

Tao, X. (2012). Study on ecological security of resource-based city based on ecological footprint theory. Proceedings of the 2012 24th Chinese Control and Decision Conference, CCDC 2012, 1737-1741. https://doi.org/10.1109/CCDC.2012.6244279

Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: Una propuesta para mejorar la publicación de revisiones sistemáticas y metaánalisis. Medicina Clínica, 135(11), 507-511. https://doi.org/10.1016/j.medcli.2010.01.015

Usubharatana, P., & Phungrassami, H. (2016). Ecological footprint analysis of canned sweet corn. Journal of Ecological Engineering, 17(3), 22-29. https://doi.org/10.12911/22998993/63320

Varun, M., D’Souza, R., Pratas, J., & Paul, M. S. (2012). Metal contamination of soils and plants associated with the glass industry in North Central India: Prospects of phytoremediation. Environmental Science and Pollution Research, 19(1), 269-281. https://doi.org/10.1007/s11356-011-0530-4

Vintilă, I. (2011). Ecological footprint evaluation of improved student’s menus using fishery products. AACL Bioflux, 3(3), 247-254. http://www.bioflux.com.ro/docs/2010.3.247-253.pdf

Wackernagel, M., Kitzes, J., Moran, D., Goldfinger, S., & Thomas, M. (2006). The ecological footprint of cities and regions: Comparing resource availability with resource demand. Environment and Urbanization, 18(1), 103-112. https://doi.org/10.1177/0956247806063978

Wackernagel, M., & Rees, W. (2001). Nuestra huella ecológica: reduciendo el impacto humano sobre la Tierra. LOM ediciones.

Wang, Y., Jiang, Y., Zheng, Y., & Wang, H. (2019). Assessing the ecological carrying capacity based on revised three-dimensional ecological footprint model in Inner Mongolia, China. Sustainability, 11(7). https://doi.org/10.3390/SU11072002

Wang, L., Liu, Y., & Chen, T. (2007). Change of ecological footprint and analysis of ecological sustainability—Taking Zhangjiakou City as an example. Chinese Geographical Science,17(1), 40-46. https://doi.org/10.1007/S11769-007-0040-Y

Wu, M., Yao, Y., Jia, F., & Wang, L. (2012). Ecological footprint analysis of resource-based and heavy industrial city sustainable development. Advanced Materials Research, 361-363, 1664-1668. https://doi.org/10.4028/www.scientific.net/AMR.361-363.1664

Xie, Y., Li, X., Hu, X., & Hu, X. (2020). The landscape of academic articles in environmental footprint family research: A bibliometric analysis during 1996-2018. Ecological Indicators, 118, 106733. https://doi.org/10.1016/J.ECOLIND.2020.106733

Xun, F., & Hu, Y. (2019). Evaluation of ecological sustainability based on a revised three-dimensional ecological footprint model in Shandong Province, China. Science of the Total Environment, 649, 582-591. https://doi.org/10.1016/J.SCITOTENV.2018.08.116

Yao, H., Zhang, Q., Niu, G., Liu, H., & Yang, Y. (2021). Applying the GM(1,1) model to simulate and predict the ecological footprint values of Suzhou City, China. Environment, Development and Sustainability, 23(8), 11297-11309. https://doi.org/10.1007/S10668-020-01111-3

Zhang, L., Dzakpasu, M., Chen, R., & Wang, X. C. (2017). Validity and utility of ecological footprint accounting: A state-of-the-art review. Sustainable Cities and Society, 32, 411-416. https://doi.org/10.1016/J.SCS.2017.04.016

Zhang, L., & Bai, W. (2021). Sustainability of crop-based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations. Technological Forecasting and Social Change, 164, 120526. https://doi.org/10.1016/J.TECHFORE.2020.120526

Zhang, P. Y., Hu, C. H., Qin, M. Z., Yan, J. H., & Zhao, Y. P. (2012). The study on surveys and evaluation of living consumption level of urban residents based on the ecological footprint. Advanced Materials Research, 616-618, 1249-1253. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.616-618.1249

Zhang, X. J. (2013). Research on sustainable development capacity of yellow river wetland based on the ecological footprint model -A case of Dongying. Advanced Materials Research, 749, 110-117. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMR.749.110

Zhang, X., Xu, L., Chen, Y., & Liu, T. (2020). Emergy-based ecological footprint analysis of a wind farm in China. Ecological Indicators, 111, 106018. https://doi.org/10.1016/j.ecolind.2019.106018

Zhou, T., Wang, Y., Gong, J., Wang, F., & Feng, Y. (2015). Ecological footprint model modification and method improvement. Shengtai Xuebao, 35(14), 4592-4603. https://doi.org/10.5846/STXB201311182756

Zhou, T., Wang, Y., & Wang, F. (2009, mayo 20-22). A dynamic assessment of ecological footprint and biocapacity in Guangzhou using RS and GIS [Conference session]. 2009 Joint Urban Remote Sensing Event, Shanghai, China. https://doi.org/10.1109/URS.2009.5137719

Cómo citar

APA

Vences Macedo, L., Chávez Dagostino, R. M., Díaz Llamas, J. L. & Bravo Olivas, M. L. (2023). La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática. Innovar, 34(91), e101009. https://doi.org/10.15446/innovar.v34n91.101009

ACM

[1]
Vences Macedo, L., Chávez Dagostino, R.M., Díaz Llamas, J.L. y Bravo Olivas, M.L. 2023. La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática. Innovar. 34, 91 (jul. 2023), e101009. DOI:https://doi.org/10.15446/innovar.v34n91.101009.

ACS

(1)
Vences Macedo, L.; Chávez Dagostino, R. M.; Díaz Llamas, J. L.; Bravo Olivas, M. L. La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática. Innovar 2023, 34, e101009.

ABNT

VENCES MACEDO, L.; CHÁVEZ DAGOSTINO, R. M.; DÍAZ LLAMAS, J. L.; BRAVO OLIVAS, M. L. La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática. Innovar, [S. l.], v. 34, n. 91, p. e101009, 2023. DOI: 10.15446/innovar.v34n91.101009. Disponível em: https://revistas.unal.edu.co/index.php/innovar/article/view/101009. Acesso em: 27 dic. 2025.

Chicago

Vences Macedo, Ludim, Rosa María Chávez Dagostino, José Luis Díaz Llamas, y Myrna Leticia Bravo Olivas. 2023. «La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática». Innovar 34 (91):e101009. https://doi.org/10.15446/innovar.v34n91.101009.

Harvard

Vences Macedo, L., Chávez Dagostino, R. M., Díaz Llamas, J. L. y Bravo Olivas, M. L. (2023) «La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática», Innovar, 34(91), p. e101009. doi: 10.15446/innovar.v34n91.101009.

IEEE

[1]
L. Vences Macedo, R. M. Chávez Dagostino, J. L. Díaz Llamas, y M. L. Bravo Olivas, «La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática», Innovar, vol. 34, n.º 91, p. e101009, jul. 2023.

MLA

Vences Macedo, L., R. M. Chávez Dagostino, J. L. Díaz Llamas, y M. L. Bravo Olivas. «La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática». Innovar, vol. 34, n.º 91, julio de 2023, p. e101009, doi:10.15446/innovar.v34n91.101009.

Turabian

Vences Macedo, Ludim, Rosa María Chávez Dagostino, José Luis Díaz Llamas, y Myrna Leticia Bravo Olivas. «La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática». Innovar 34, no. 91 (julio 1, 2023): e101009. Accedido diciembre 27, 2025. https://revistas.unal.edu.co/index.php/innovar/article/view/101009.

Vancouver

1.
Vences Macedo L, Chávez Dagostino RM, Díaz Llamas JL, Bravo Olivas ML. La huella ecológica aplicada al análisis del ciclo de vida, corporaciones y ciudades: una revisión sistemática. Innovar [Internet]. 1 de julio de 2023 [citado 27 de diciembre de 2025];34(91):e101009. Disponible en: https://revistas.unal.edu.co/index.php/innovar/article/view/101009

Descargar cita

CrossRef Cited-by

CrossRef citations1

1. Diana Patricia Franco Campos, Milton Januario Rueda Varón, Helmer Muñoz Hernandez, Javier Darío Canabal Guzman, Liliana Stella Genez Puello. (2024). Emerging Lines of Research Related to Ecological Compensation Models. A Bibliometric Review Study. Journal of Hunan University Natural Sciences, 51(11) https://doi.org/10.55463/issn.1674-2974.51.11.9.

Dimensions

PlumX

Visitas a la página del resumen del artículo

1499

Descargas

Los datos de descargas todavía no están disponibles.