Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa
Metaheuristics for Multicriteria Decision-Making: A Systematic Literature Review and Research Opportunities
Metaheurística para la toma de decisiones multicriterio: revisión sistemática de la literatura y oportunidades de investigación
DOI:
https://doi.org/10.15446/innovar.v35n96.104948Palabras clave:
algoritmo genético, lógica Fuzzy, meta-heurísticas, revisão sistemática da literatura, tomada de decisão (pt)Genetic algorithm, fuzzy logic, metaheuristics, systematic literature review, decision-making (en)
algoritmo genético, lógica fuzzy, metaheurística, revisión sistemática de la literatura, toma de decisiones (es)
Descargas
Devido ao aumento da complexidade das organizações, mais variáveis passam a integrar o contexto decisório, tornando mais difícil a visualização das alternativas, a estruturação do problema de decisão e a avaliação das ações. Assim, a pesquisa operacional objetiva facilitar o processo de tomada de decisão por meio da modelagem matemática e, com o auxílio das tecnologias de informação, tem-se observado a implementação de técnicas mais robustas. Dessa forma, a presente pesquisa buscou identificar como as meta-heurísticas computacionais têm sido utilizadas para a tomada de decisão gerencial no contexto multicritério. Para isso, foi realizada revisão sistemática da literatura, com o auxílio do protocolo Prisma, o que resultou em um portfólio bibliográfico composto de 54 artigos alinhados à temática. Foram realizadas a análise bibliométrica, considerando-se nove aspectos, e a metassíntese, cujos resultados demonstraram o predomínio dos algoritmos genéticos, da lógica Fuzzy e da utilização de métodos híbridos. O crescimento da soft computing na pesquisa operacional fica evidenciado, o que demonstra que a inteligência artificial consiste em importante ferramenta para o auxílio à tomada de decisões gerenciais. Emergem, portanto, como oportunidades para futuras pesquisas, a utilização de metodologias para o tratamento das incertezas inerentes à tomada de decisões e dos algoritmos computacionais evolutivos para as tomadas de decisões multiobjetivos.
As organizational environments grow increasingly complex, a larger number of variables now influence decision-making processes. This added complexity poses significant challenges in identifying viable alternatives, structuring decision problems, and evaluating potential courses of action. Operations research seeks to support decision-making through mathematical modeling and—bolstered by advancements in information technology—the adoption of more sophisticated and robust techniques; an approach that has become increasingly widespread. This study aimed to examine how computational metaheuristics have been employed to support managerial decision-making in multicriteria contexts. A systematic literature review was conducted following the prisma protocol, resulting in a curated bibliographic portfolio of 54 articles relevant to the research focus. The analysis included both a bibliometric assessment—covering nine key dimensions—and a metasynthesis. The findings reveal a predominance of genetic algorithms, fuzzy logic, and the use of hybrid methodologies. The growing prominence of soft computing within the field of operations research is evident, emphasizing the value of artificial intelligence as a powerful tool for managerial decision support. Promising avenues for future research include the application of methodologies to address uncertainty in decision-making processes and the use of evolutionary computational algorithms for solving multi-objective decision problems.
Debido a la creciente complejidad de las organizaciones, cada vez más variables forman parte del contexto de toma de decisiones, lo que dificulta la visualización de alternativas, la estructuración del problema de decisión y la evaluación de las acciones. Así, la investigación operativa pretende facilitar el proceso de toma de decisiones mediante la modelización matemática y, con la ayuda de las tecnologías de la información, se están implantando técnicas más robustas. Esta investigación estudió el uso de la metaheurística computacional en la toma de decisiones de gestión en un contexto multicriterio. Para ello, se realizó una revisión sistemática de la literatura utilizando el protocolo Prisma, que resultó en un portafolio bibliográfico de 54 artículos alineados con el tema. Se realizaron análisis bibliométricos, considerando nueve aspectos, y metasíntesis, cuyos resultados mostraron el predominio de los algoritmos genéticos, la lógica fuzzy y el uso de métodos híbridos. El crecimiento del soft computing en la investigación operativa es evidente, lo que demuestra que la inteligencia artificial es una herramienta importante para facilitar la toma de decisiones de gestión. Por lo tanto, las oportunidades para futuras investigaciones incluyen el uso de metodologías para tratar las incertidumbres inherentes a la toma de decisiones y algoritmos computacionales evolutivos para la toma de decisiones multiobjetivo.
Referencias
Al-Bazi, A., Uney, E., & Abu-Monshar, A. (2019). Developing an overbooking fuzzy-based mathematical optimization model for multi-leg flights. Transportation Research Procedia, 43, 165-177. https://doi.org/10.1016/j.trpro.2019.12.031
Arsovski, S., Putnik, G., Arsovski, Z., Tadic, D., Aleksic, A., Djordjevic, A., & Moljevic, S. (2015). Modelling and enhancement of organizational resilience potential in process industry SMEs. Sustainability. https://doi.org/10.3390/su71215828
Ashfari, H., Sharifi, M., Elmekkawy, T. Y., & Peng, Q. (2014). Facility location decisions within integrated forward/reverse logistics under uncertainty. Procedia CIRP, 17, 606-610. https://doi.org/10.1016/j.procir.2014.01.092
Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
Basnet, C., & Weintraub, A. (2009). A genetic algorithm for a bicriteria supplier selection problem. International Transactions in Operational Research, 16, 173-189. https://doi.org/10.1111/j.1475-3995.2009.00680.x
Bouyssou, D., Marchant, T., Pirlot, M., Perny, P., Tsoukiàs, A., & Vincke, P. (2000). Evaluation and decision models: A critical perspective. Kluwer Academic Publishers. https://doi.org/10.1057/palgrave.jors.2601380
Bouyssou, D., Marchant, T., & Pirlot, M. (2023). A theoretical look at ELECTRE TRI-nB and related sorting models. A Quarterly Journal of Operations Research, 21, 1-31. https://doi.org/10.1007/s10288-022-00501-9
Brans, J. P. & Vincke, P. (1985). A preference ranking organisation method: The PROMETHEE method for multiple criteria. Decision-Making. Management Science, 31, 647-656. https://doi.org/10.1287/mnsc.31.6.647
Castaño, F., Gutierrez, A. F., Velasco, N., & Amaya, C. (2019). Using open access data to model a technician routing and scheduling problem in a congested urban setting. Procedia Manufacturing, 39, 1129-1138. https://doi.org/10.1016/j.promfg.2020.01.357
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
Che, C. H. (2012). Clustering and selecting suppliers based on simulated annealing algorithms. Computers and Mathematics with Applications, 63, 228-238. https://doi.org/10.1016/j.camwa.2011.11.014
Chen, Z., Liu, L., Li, L., & Li, H. (2014). A two-stage model for project optimization in transportation infrastructure management system. Mathematical Problems in Engineering. https://doi.org/10.1155/2014/914515
Chen, C.-C., & Schonfeld, P. (2012). A Hybrid Heuristic Technique for Optimizing Intermodal Logistics Timed Transfer Systems. Procedia — Social and Behavioral Sciences, 48, 2566-2576. https://doi.org/10.1016/j.sbspro.2012.06.1227
Costa, J. F. S., Wanderley, A. J. M. E., & Cosenza, C. A. N. (2005). Utilização de Algoritmos Genéticos em Metodologia Multicritério: uma solução para inconsistência matricial. Revista Gestão Industrial, 1(4), 101-109. https://doi.org/10.3895/S1808-04482005000400011
Deng, J-L. (1982). Control problems of grey systems. Systems and Control Letters, 1(5), 288-294. https://doi.org/10.1016/S0167-6911(82)80025-X
Fanti, M., Maione, B., Naso, D., & Turchiano, B. (1998). Genetic multi-criteria approach to flexible line scheduling. International Journal of Approximate Reasoning, 19, 5-21. https://doi.org/10.1016/S0888-613X(98)00014-0
Fontalvo, M. O., Maza, V. C., & Miranda, P. (2017). A meta-heuristic approach to a strategic mixed inventory-location model: Formulation and application. Transportation Research Procedia, 25, 729-746. https://doi.org/10.1016/j.trpro.2017.05.454
Ghaffari-Nasab, N., Ahari, S.G., & Ghazanfari, M. (2013). A hybrid simulated annealing based heuristic for solving the location-routing problem with fuzzy demands. Scientia Iranica, Transactions E: Industrial Engineering, 20(3), 919-930. https://doi.org/10.1016/j.scient.2013.02.006
Gharakezloo, Y. N., Nikoo, M. R., Karimi-Jashni, A., & Mooselu, M. G. (2022). A hybrid statistical decision-making optimization approach for groundwater vulnerability considering uncertainty. Environmental Science and Pollution Research, 29(6), 8597-8612. https://doi.org/10.1007/s11356-021-16242-x
Gillis, M., Urban, R., Saif, A., Kamal, N., & Murphy, M. (2021). A simulation-optimization framework for optimizing response strategies to epidemics. Operations Research Perspectives, 8, 100210. https://doi.org/10.1016/j.orp.2021.100210
Goodarzi, F., Abdollahzadeh, V., & Zeinalnezhad, M. (2022). An integrated multi-criteria decision-making and multi-objective optimization framework for green supplier evaluation and optimal order allocation under uncertainty. Decision Analytics Journal, 4, 100087. https://doi.org/10.1016/j.dajour.2022.100087
Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Springer-Verlag. http://doi.org/10.1007/978-3-642-48318-9
Hazrati, H., Barzegarinegad, A., & Siaby-Serajehlo, H. (2021). A hybrid mathematical and decision-making model to determine the amount of economic order considering the discount. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5229949
He, P., & Li, J. (2021) A joint optimization framework for wheat harvesting and transportation considering fragmental farmlands. Information Processing in Agriculture, 8, 1-14. https://doi.org/10.1016/j.inpa.2020.04.006
Jiang, X., & Sohail, M. (2022). Evaluation method of human resource management efficiency of chain retail enterprises based on distributed database. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2022/1860426
Kaczyńska, A., Kołodziejczyk, J., & Sałabun, W. (2021). A new multi-criteria model for ranking chess players. Procedia Computer Science, 192, 4290-4299. https://doi.org/10.1016/j.procs.2021.09.205
Kamali, A., Fatemi Ghomi, S. M. T., & Jolai, F. (2011). A multi-objective quantity discount and joint optimization model for coordination of a single-buyer multi-vendor supply chain. Computers and Mathematics with Applications, 62, 3251-3269. https://doi.org/10.1016/j.camwa.2011.08.040
Kannan, A. S. K., Balamurugan, S. A. A., & Sasikala, S. (2021). A customized metaheuristic approaches for improving supplier selection in intelligent decision making. IEEE Access, 9, 56228-56239. https://doi.org/10.1109/ACCESS.2021.3071454
Kayikci, Y. (2010). A conceptual model for intermodal freight logistics centre location decisions. Procedia Social and Behavioral Sciences, 2(3), 6297-6311. https://doi.org/10.1016/j.sbspro.2010.04.039
Khumaidi, A., Sukoco, H., Purwanto, A., & Kurniawan, A. (2020). Design of warehouse management system for fresh product in supply chain network. International Journal of Advanced Trends in Computer Science and Engineering, 9(1), 308-314. https//doi.org/10.30534/ijatcse/2020/47912020
Kouatli, I. (2013). A biologicaly inspired decision model for multivariable genetic-Fuzzy-AHP system. Procedia Computer Science, 22, 2-9. https://doi.org/10.1016/j.procs.2013.09.075
Kuo, R., & Han, Y. (2011). A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem: A case study on supply chain model. Applied Mathematical Modelling, 35, 3905-3917. https://doi.org/10.1016/j.apm.2011.02.008
Kuo, R.J., Hong, S.Y., & Huang, Y.C. (2010). Integration of particle swarm optimization-based Fuzzy neural network and artificial neural network for supplier selection. Applied Mathematical Modelling, 34, 3976-3990. https://doi.org/10.1016/j.apm.2010.03.033
Kuo, R. J., Wibowo, B. S., & Zulvia, F. E. (2016). Application of a fuzzy ant colony system to solve the dynamic vehicle routing problem with uncertain service time. Applied Mathematical Modelling, 40, 9990-10001. https://doi.org/10.1016/j.apm.2016.06.025
Lee, A.H., Kang, H.-Y., Lai, C.-M., & Hong, W.-Y. (2013). An integrated model for lot sizing with supplier selection and quantity discounts. Applied Mathematical Modelling, 37, 4733-4746. https://doi.org/10.1016/j.apm.2012.09.056
Leyva-López, J. C., Solano-Noriega, J. J., Gastélum-Chavira, D. A., & Gaxiola-Valenzuela, T. (2022). A Personnel Selection Model for a Software Development Company based on the ELECTRE III Method and a Variant of NSGA-II. Innovar, 32(85). https://doi.org/10.15446/innovar.v32n85.100657
Li, J., Xu, J., & Gen, M. (2006). A class of multiobjective linear programming model with fuzzy random coefficients. Mathematical and Computer Modelling, 44, 1097-1113. https://doi.org/10.1016/j.mcm.2006.03.013
Li, Q., Zhong, H., Wang, Y., Leng, Y., & Guo, C. (2016). Integrated development optimization model and its solving method of multiple gas fields. Petroleum Exploration and Development, 43(2), 293-300. https://doi.org/10.1016/S1876-3804(16)30033-7
Liang, J., & Liu, M. (2018). Network design for municipal solid waste collection: A case study of the Nanjing Jiangbei new area. International Journal Environmental Research and Public Health, 15(12). https://doi.org/10.3390/ijerph15122812
Lin, D.-Y., & Chu, Y.-M. (2014). A lagrangian relaxation approach to the mixed-product assembly line sequencing problem: A case study of a door-lock company in Taiwan. Applied Mathematical Modelling, 38, 4493-4511. https://doi.org/10.1016/j.apm.2014.02.029
Longaray, A. A., Tondolo, V. A. G., Munhoz, P. R. & Tondolo, R. R. P. (2016). Emprego de métodos multicritério em decisões gerenciais: uma análise bibliométrica da produção científica brasileira. Revista Contemporânea de Contabilidade, 13(29), 113-128. http://doi.org/10.5007/2175-8069.2016v13n29p113
Lopez-Espin, J. J., Aparicio, J., Gimenez, D., & Pastor, J. T. (2014). Benchmarking and data envelopment analysis. an approach based on metaheuristics. Procedia Computer Science, 29, 390-399. https://doi.org/10.1016/j.procs.2014.05.035
Ma, S. (2016). A nonlinear bi‑level programming approach for product portfolio management. SpringerPlus, 5(727), 1-18. https://doi.org/10.1186/s40064-016-2421-0
Nguyen, P.-H. (2022). GA-GDEMATEL: A novel approach to optimize recruitment and personnel selection problems. Mathematical Problems in Engineering. https://doi.org/10.1155/2022/3106672
Olabanji, O. M., & Mpofu, K. (2021). Appraisal of conceptual designs: Coalescing fuzzy analytic hierarchy process (F-AHP) and Fuzzy grey relational analysis (F-GRA). Results in Engineering, 9, 100194. https://doi.org/10.1016/j.rineng.2020.100194
Pamucar, D., Ebadi Torkayesh, A., Deveci, M., & Simic, V. (2022). Recovery center selection for end-of-life automotive lithium-ion batteries using an integrated Fuzzy WASPAS approach. Expert Systems with Applications, 206, 117827. https://doi.org/10.1016/j.eswa.2022.117827
Pérez-Gladish, B., Ferreira, F. A. F., & Zopounidis, C. (2020). MCDM/A studies for economic development, social cohesion and environmental sustainability: Introduction. International Journal of Sustainable Development and World Ecology, 28(1). https://doi.org/10.1080/13504509.2020.1821257
Rabbani, M., Baghersad, M., & Jafari, R. (2013). A new hybrid GA-PSO method for solving multi-period inventory routing problem with considering financial decisions. Journal of Industrial Engineering and Management, 6(4), 909-929. https://doi.org/10.3926/jiem.629
Rafiei Sardooi, E., Azareh, A., Mesbahzadeh, T., Soleimani Sardoo, F., Parteli, E. J. R., & Pradhan, B. (2021). A hybrid model using data mining and multi-criteria decision-making methods for landslide risk mapping at Golestan Province, Iran. Environmental Earth Sciences, 80(15). https://doi.org/10.1007/s12665-021-09788-z
Rostami, M., Kheirandish, O., & Ansari, N. (2015). Minimizing maximum tardiness and delivery costs with batch delivery and job release times. Applied Mathematical Modelling, 39, 4909-4927. https://doi.org/10.1016/j.apm.2015.03.052
Rostami, M., Razmi, J., & Jolai, F. (2010). Designing a genetic algorithm to solve an integrated model in supply chain management using fuzzy goal programming approach. In: Ortiz, Á., Franco, R.D., & Gasquet, P.G. (eds) Balanced Automation Systems for Future Manufacturing Networks (BASYS). Springer. https://doi.org/10.1007/978-3-642-14341-0_20
Roy, B. (1968). Classement et choix en presence de points de vue multiples (la methode ELECTRE). Revue française d’automatique, d’informatique et de recherche opérationnelle. Recherche opérationnelle, 2(1), 57-75. DOI: https://doi.org/10.1051/ro/196802V100571
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5
Sadeghi, J., Mousavi, S. M., & Niaki, S. T. A. (2016). Optimizing an inventory model with fuzzy demand, backordering, and discount using a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 40, 7318-7335. https://doi.org/10.1016/j.apm.2016.03.013
Saraçoglu, I., & Süer, G.A. (2018). Multi-objective fuzzy flow shop scheduling model in a manufacturing company. Procedia Manufacturing, 17, 214-221. https://doi.org/10.1016/j.promfg.2018.10.039
Smarandache, F. (1995). Neutrosophic Logic and Set. http://fs.gallup.unm.edu/neutrosophy.htm
Sutrisno, Widowati, & Sunarsih. (2019). Genetic algorithm approach for large scale quadratic programming of probabilistic supplier selection and inventory management problem. Journal of Physics: Conference Series, 1307. https://doi.org/10.1088/1742-6596/1307/1/012001
Tavana, M., Shaabani, A., Di Caprio, D., & Amiri, M. (2021). An integrated and comprehensive fuzzy multicriteria model for supplier selection in digital supply chains. Sustainable Operations and Computers, 2, 149-169. https://doi.org/10.1016/j.susoc.2021.07.008
Tezenji, F. R., Mohammadi, M., Pasandideh, S., & Koupaei, M. N. (2016). An integrated model for supplier location-selection and order allocation under capacity constraints in an uncertain environment. Scientia Iranica, International Journal of Science & Techology, 23(6), 3009-3025. https://doi.org/10.24200/SCI.2016.4008
Vahdani, B., Iranmanesh, S.H., Mousavi, S.M., & Abdollahzade, M. (2012). A locally linear neuro-fuzzy model for supplier selection in cosmetics industry. Applied Mathematical Modelling, 36, 4714-4727. https://doi.org/10.1016/j.apm.2011.12.006
Vardi, M., Neyestani, M., & Ghorbanian, A. (2019). Supplier selection and order allocation problem modeling with the aim of comparing incremental discounts versus wholesale discounts by using GA and NSGA algorithms. Journal Europeen des Systemes Automatises, 52(1), 23-34. https://doi.org/10.18280/jesa.520104
Wang, Y.-C., & Chen, T. (2021). A Bi-objective AHP-MINLP-GA approach for Flexible Alternative Supplier Selection amid the COVID-19 Pandemic. Soft Computing Letters, 3, 100016. https://doi.org/10.1016/j.socl.2021.100016
Wang, Y., Xi, C., Zhang, S., Zhang, W., & Yu, D. (2015). Combined Approach for Government E-Tendering using GA and TOPSIS with Intuitionistic Fuzzy Information. PLoS ONE, 10(7), 1-20. https://doi.org/10.1371/journal.pone.0130767
Wiecek, P. (2016). Intelligent approach to inventory control in logistics under uncertainty conditions. Transportation Research Procedia, 18, 164-171. https://doi.org/10.1016/j.trpro.2016.12.023
Zak, J., & Weglinski, S. (2014). The selection of the logistics center location based on MCDM/A methodology. Transportation Research Procedia, 3, 555-564. https://doi.org/10.1016/j.trpro.2014.10.034
Zhang, H., Deng, Y., Chan, F. T. S., & Zhang, X. (2013). A modified multi-criterion optimization genetic algorithm for order distribution in collaborative supply chain. Applied Mathematical Modelling, 37, 7855-7864. https://doi.org/10.1016/j.apm.2013.05.021
Zhu, N., Zhu, C., & Emrouznejad, A. (2020). A combined machine learning algorithms and dea method for measuring and predicting the efficiency of Chinese manufacturing listed companies. Journal of Management Science and Engineering. 6(4), 435-448. https://doi.org/10.1016/j.jmse.2020.10.001
Xidonas, P., Doukas, H., & Sarmas, E. (2021). A python-based multicriteria portfolio selection DSS. RAIRO - Operations Research, 55, S3009-S3034. https://doi.org/10.1051/ro/2020140
Zopounidis, C., & Pardalos, P. M. (Eds.). (2010). Handbook of multicriteria analysis (v. 103). Springer Science & Business Media. https://doi.org/10.1007/978-3-540-92828-7
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Innovar

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Todos los artículos publicados por Innovar se encuentran disponibles globalmente con acceso abierto y licenciados bajo los términos de Creative Commons Atribución-No_Comercial-Sin_Derivadas 4.0 Internacional (CC BY-NC-ND 4.0).
Una vez seleccionados los artículos para un número, y antes de iniciar la etapa de cuidado y producción editorial, los autores deben firmar una cesión de derechos patrimoniales de su obra. Innovar se ciñe a las normas colombianas en materia de derechos de autor.
El material de esta revista puede ser reproducido o citado con carácter académico, citando la fuente.
Esta obra está bajo una Licencia Creative Commons:








