Publicado

2025-04-01

Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa

Metaheuristics for Multicriteria Decision-Making: A Systematic Literature Review and Research Opportunities

Metaheurística para la toma de decisiones multicriterio: revisión sistemática de la literatura y oportunidades de investigación

DOI:

https://doi.org/10.15446/innovar.v35n96.104948

Palabras clave:

algoritmo genético, lógica Fuzzy, meta-heurísticas, revisão sistemática da literatura, tomada de decisão (pt)
Genetic algorithm, fuzzy logic, metaheuristics, systematic literature review, decision-making (en)
algoritmo genético, lógica fuzzy, metaheurística, revisión sistemática de la literatura, toma de decisiones (es)

Descargas

Autores/as

Devido ao aumento da complexidade das organizações, mais variáveis passam a integrar o contexto decisório, tornando mais difícil a visualização das alternativas, a estruturação do problema de decisão e a avaliação das ações. Assim, a pesquisa operacional objetiva facilitar o processo de tomada de decisão por meio da modelagem matemática e, com o auxílio das tecnologias de informação, tem-se observado a implementação de técnicas mais robustas. Dessa forma, a presente pesquisa buscou identificar como as meta-heurísticas computacionais têm sido utilizadas para a tomada de decisão gerencial no contexto multicritério. Para isso, foi realizada revisão sistemática da literatura, com o auxílio do protocolo Prisma, o que resultou em um portfólio bibliográfico composto de 54 artigos alinhados à temática. Foram realizadas a análise bibliométrica, considerando-se nove aspectos, e a metassíntese, cujos resultados demonstraram o predomínio dos algoritmos genéticos, da lógica Fuzzy e da utilização de métodos híbridos. O crescimento da soft computing na pesquisa operacional fica evidenciado, o que demonstra que a inteligência artificial consiste em importante ferramenta para o auxílio à tomada de decisões gerenciais. Emergem, portanto, como oportunidades para futuras pesquisas, a utilização de metodologias para o tratamento das incertezas inerentes à tomada de decisões e dos algoritmos computacionais evolutivos para as tomadas de decisões multiobjetivos.

As organizational environments grow increasingly complex, a larger number of variables now influence decision-making processes. This added complexity poses significant challenges in identifying viable alternatives, structuring decision problems, and evaluating potential courses of action. Operations research seeks to support decision-making through mathematical modeling and—bolstered by advancements in information technology—the adoption of more sophisticated and robust techniques; an approach that has become increasingly widespread. This study aimed to examine how computational metaheuristics have been employed to support managerial decision-making in multicriteria contexts. A systematic literature review was conducted following the prisma protocol, resulting in a curated bibliographic portfolio of 54 articles relevant to the research focus. The analysis included both a bibliometric assessment—covering nine key dimensions—and a metasynthesis. The findings reveal a predominance of genetic algorithms, fuzzy logic, and the use of hybrid methodologies. The growing prominence of soft computing within the field of operations research is evident, emphasizing the value of artificial intelligence as a powerful tool for managerial decision support. Promising avenues for future research include the application of methodologies to address uncertainty in decision-making processes and the use of evolutionary computational algorithms for solving multi-objective decision problems.

Debido a la creciente complejidad de las organizaciones, cada vez más variables forman parte del contexto de toma de decisiones, lo que dificulta la visualización de alternativas, la estructuración del problema de decisión y la evaluación de las acciones. Así, la investigación operativa pretende facilitar el proceso de toma de decisiones mediante la modelización matemática y, con la ayuda de las tecnologías de la información, se están implantando técnicas más robustas. Esta investigación estudió el uso de la metaheurística computacional en la toma de decisiones de gestión en un contexto multicriterio. Para ello, se realizó una revisión sistemática de la literatura utilizando el protocolo Prisma, que resultó en un portafolio bibliográfico de 54 artículos alineados con el tema. Se realizaron análisis bibliométricos, considerando nueve aspectos, y metasíntesis, cuyos resultados mostraron el predominio de los algoritmos genéticos, la lógica fuzzy y el uso de métodos híbridos. El crecimiento del soft computing en la investigación operativa es evidente, lo que demuestra que la inteligencia artificial es una herramienta importante para facilitar la toma de decisiones de gestión. Por lo tanto, las oportunidades para futuras investigaciones incluyen el uso de metodologías para tratar las incertidumbres inherentes a la toma de decisiones y algoritmos computacionales evolutivos para la toma de decisiones multiobjetivo.

Referencias

Al-Bazi, A., Uney, E., & Abu-Monshar, A. (2019). Developing an overbooking fuzzy-based mathematical optimization model for multi-leg flights. Transportation Research Procedia, 43, 165-177. https://doi.org/10.1016/j.trpro.2019.12.031

Arsovski, S., Putnik, G., Arsovski, Z., Tadic, D., Aleksic, A., Djordjevic, A., & Moljevic, S. (2015). Modelling and enhancement of organizational resilience potential in process industry SMEs. Sustainability. https://doi.org/10.3390/su71215828

Ashfari, H., Sharifi, M., Elmekkawy, T. Y., & Peng, Q. (2014). Facility location decisions within integrated forward/reverse logistics under uncertainty. Procedia CIRP, 17, 606-610. https://doi.org/10.1016/j.procir.2014.01.092

Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4

Basnet, C., & Weintraub, A. (2009). A genetic algorithm for a bicriteria supplier selection problem. International Transactions in Operational Research, 16, 173-189. https://doi.org/10.1111/j.1475-3995.2009.00680.x

Bouyssou, D., Marchant, T., Pirlot, M., Perny, P., Tsoukiàs, A., & Vincke, P. (2000). Evaluation and decision models: A critical perspective. Kluwer Academic Publishers. https://doi.org/10.1057/palgrave.jors.2601380

Bouyssou, D., Marchant, T., & Pirlot, M. (2023). A theoretical look at ELECTRE TRI-nB and related sorting models. A Quarterly Journal of Operations Research, 21, 1-31. https://doi.org/10.1007/s10288-022-00501-9

Brans, J. P. & Vincke, P. (1985). A preference ranking organisation method: The PROMETHEE method for multiple criteria. Decision-Making. Management Science, 31, 647-656. https://doi.org/10.1287/mnsc.31.6.647

Castaño, F., Gutierrez, A. F., Velasco, N., & Amaya, C. (2019). Using open access data to model a technician routing and scheduling problem in a congested urban setting. Procedia Manufacturing, 39, 1129-1138. https://doi.org/10.1016/j.promfg.2020.01.357

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8

Che, C. H. (2012). Clustering and selecting suppliers based on simulated annealing algorithms. Computers and Mathematics with Applications, 63, 228-238. https://doi.org/10.1016/j.camwa.2011.11.014

Chen, Z., Liu, L., Li, L., & Li, H. (2014). A two-stage model for project optimization in transportation infrastructure management system. Mathematical Problems in Engineering. https://doi.org/10.1155/2014/914515

Chen, C.-C., & Schonfeld, P. (2012). A Hybrid Heuristic Technique for Optimizing Intermodal Logistics Timed Transfer Systems. Procedia — Social and Behavioral Sciences, 48, 2566-2576. https://doi.org/10.1016/j.sbspro.2012.06.1227

Costa, J. F. S., Wanderley, A. J. M. E., & Cosenza, C. A. N. (2005). Utilização de Algoritmos Genéticos em Metodologia Multicritério: uma solução para inconsistência matricial. Revista Gestão Industrial, 1(4), 101-109. https://doi.org/10.3895/S1808-04482005000400011

Deng, J-L. (1982). Control problems of grey systems. Systems and Control Letters, 1(5), 288-294. https://doi.org/10.1016/S0167-6911(82)80025-X

Fanti, M., Maione, B., Naso, D., & Turchiano, B. (1998). Genetic multi-criteria approach to flexible line scheduling. International Journal of Approximate Reasoning, 19, 5-21. https://doi.org/10.1016/S0888-613X(98)00014-0

Fontalvo, M. O., Maza, V. C., & Miranda, P. (2017). A meta-heuristic approach to a strategic mixed inventory-location model: Formulation and application. Transportation Research Procedia, 25, 729-746. https://doi.org/10.1016/j.trpro.2017.05.454

Ghaffari-Nasab, N., Ahari, S.G., & Ghazanfari, M. (2013). A hybrid simulated annealing based heuristic for solving the location-routing problem with fuzzy demands. Scientia Iranica, Transactions E: Industrial Engineering, 20(3), 919-930. https://doi.org/10.1016/j.scient.2013.02.006

Gharakezloo, Y. N., Nikoo, M. R., Karimi-Jashni, A., & Mooselu, M. G. (2022). A hybrid statistical decision-making optimization approach for groundwater vulnerability considering uncertainty. Environmental Science and Pollution Research, 29(6), 8597-8612. https://doi.org/10.1007/s11356-021-16242-x

Gillis, M., Urban, R., Saif, A., Kamal, N., & Murphy, M. (2021). A simulation-optimization framework for optimizing response strategies to epidemics. Operations Research Perspectives, 8, 100210. https://doi.org/10.1016/j.orp.2021.100210

Goodarzi, F., Abdollahzadeh, V., & Zeinalnezhad, M. (2022). An integrated multi-criteria decision-making and multi-objective optimization framework for green supplier evaluation and optimal order allocation under uncertainty. Decision Analytics Journal, 4, 100087. https://doi.org/10.1016/j.dajour.2022.100087

Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. Springer-Verlag. http://doi.org/10.1007/978-3-642-48318-9

Hazrati, H., Barzegarinegad, A., & Siaby-Serajehlo, H. (2021). A hybrid mathematical and decision-making model to determine the amount of economic order considering the discount. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5229949

He, P., & Li, J. (2021) A joint optimization framework for wheat harvesting and transportation considering fragmental farmlands. Information Processing in Agriculture, 8, 1-14. https://doi.org/10.1016/j.inpa.2020.04.006

Jiang, X., & Sohail, M. (2022). Evaluation method of human resource management efficiency of chain retail enterprises based on distributed database. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2022/1860426

Kaczyńska, A., Kołodziejczyk, J., & Sałabun, W. (2021). A new multi-criteria model for ranking chess players. Procedia Computer Science, 192, 4290-4299. https://doi.org/10.1016/j.procs.2021.09.205

Kamali, A., Fatemi Ghomi, S. M. T., & Jolai, F. (2011). A multi-objective quantity discount and joint optimization model for coordination of a single-buyer multi-vendor supply chain. Computers and Mathematics with Applications, 62, 3251-3269. https://doi.org/10.1016/j.camwa.2011.08.040

Kannan, A. S. K., Balamurugan, S. A. A., & Sasikala, S. (2021). A customized metaheuristic approaches for improving supplier selection in intelligent decision making. IEEE Access, 9, 56228-56239. https://doi.org/10.1109/ACCESS.2021.3071454

Kayikci, Y. (2010). A conceptual model for intermodal freight logistics centre location decisions. Procedia Social and Behavioral Sciences, 2(3), 6297-6311. https://doi.org/10.1016/j.sbspro.2010.04.039

Khumaidi, A., Sukoco, H., Purwanto, A., & Kurniawan, A. (2020). Design of warehouse management system for fresh product in supply chain network. International Journal of Advanced Trends in Computer Science and Engineering, 9(1), 308-314. https//doi.org/10.30534/ijatcse/2020/47912020

Kouatli, I. (2013). A biologicaly inspired decision model for multivariable genetic-Fuzzy-AHP system. Procedia Computer Science, 22, 2-9. https://doi.org/10.1016/j.procs.2013.09.075

Kuo, R., & Han, Y. (2011). A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem: A case study on supply chain model. Applied Mathematical Modelling, 35, 3905-3917. https://doi.org/10.1016/j.apm.2011.02.008

Kuo, R.J., Hong, S.Y., & Huang, Y.C. (2010). Integration of particle swarm optimization-based Fuzzy neural network and artificial neural network for supplier selection. Applied Mathematical Modelling, 34, 3976-3990. https://doi.org/10.1016/j.apm.2010.03.033

Kuo, R. J., Wibowo, B. S., & Zulvia, F. E. (2016). Application of a fuzzy ant colony system to solve the dynamic vehicle routing problem with uncertain service time. Applied Mathematical Modelling, 40, 9990-10001. https://doi.org/10.1016/j.apm.2016.06.025

Lee, A.H., Kang, H.-Y., Lai, C.-M., & Hong, W.-Y. (2013). An integrated model for lot sizing with supplier selection and quantity discounts. Applied Mathematical Modelling, 37, 4733-4746. https://doi.org/10.1016/j.apm.2012.09.056

Leyva-López, J. C., Solano-Noriega, J. J., Gastélum-Chavira, D. A., & Gaxiola-Valenzuela, T. (2022). A Personnel Selection Model for a Software Development Company based on the ELECTRE III Method and a Variant of NSGA-II. Innovar, 32(85). https://doi.org/10.15446/innovar.v32n85.100657

Li, J., Xu, J., & Gen, M. (2006). A class of multiobjective linear programming model with fuzzy random coefficients. Mathematical and Computer Modelling, 44, 1097-1113. https://doi.org/10.1016/j.mcm.2006.03.013

Li, Q., Zhong, H., Wang, Y., Leng, Y., & Guo, C. (2016). Integrated development optimization model and its solving method of multiple gas fields. Petroleum Exploration and Development, 43(2), 293-300. https://doi.org/10.1016/S1876-3804(16)30033-7

Liang, J., & Liu, M. (2018). Network design for municipal solid waste collection: A case study of the Nanjing Jiangbei new area. International Journal Environmental Research and Public Health, 15(12). https://doi.org/10.3390/ijerph15122812

Lin, D.-Y., & Chu, Y.-M. (2014). A lagrangian relaxation approach to the mixed-product assembly line sequencing problem: A case study of a door-lock company in Taiwan. Applied Mathematical Modelling, 38, 4493-4511. https://doi.org/10.1016/j.apm.2014.02.029

Longaray, A. A., Tondolo, V. A. G., Munhoz, P. R. & Tondolo, R. R. P. (2016). Emprego de métodos multicritério em decisões gerenciais: uma análise bibliométrica da produção científica brasileira. Revista Contemporânea de Contabilidade, 13(29), 113-128. http://doi.org/10.5007/2175-8069.2016v13n29p113

Lopez-Espin, J. J., Aparicio, J., Gimenez, D., & Pastor, J. T. (2014). Benchmarking and data envelopment analysis. an approach based on metaheuristics. Procedia Computer Science, 29, 390-399. https://doi.org/10.1016/j.procs.2014.05.035

Ma, S. (2016). A nonlinear bi‑level programming approach for product portfolio management. SpringerPlus, 5(727), 1-18. https://doi.org/10.1186/s40064-016-2421-0

Nguyen, P.-H. (2022). GA-GDEMATEL: A novel approach to optimize recruitment and personnel selection problems. Mathematical Problems in Engineering. https://doi.org/10.1155/2022/3106672

Olabanji, O. M., & Mpofu, K. (2021). Appraisal of conceptual designs: Coalescing fuzzy analytic hierarchy process (F-AHP) and Fuzzy grey relational analysis (F-GRA). Results in Engineering, 9, 100194. https://doi.org/10.1016/j.rineng.2020.100194

Pamucar, D., Ebadi Torkayesh, A., Deveci, M., & Simic, V. (2022). Recovery center selection for end-of-life automotive lithium-ion batteries using an integrated Fuzzy WASPAS approach. Expert Systems with Applications, 206, 117827. https://doi.org/10.1016/j.eswa.2022.117827

Pérez-Gladish, B., Ferreira, F. A. F., & Zopounidis, C. (2020). MCDM/A studies for economic development, social cohesion and environmental sustainability: Introduction. International Journal of Sustainable Development and World Ecology, 28(1). https://doi.org/10.1080/13504509.2020.1821257

Rabbani, M., Baghersad, M., & Jafari, R. (2013). A new hybrid GA-PSO method for solving multi-period inventory routing problem with considering financial decisions. Journal of Industrial Engineering and Management, 6(4), 909-929. https://doi.org/10.3926/jiem.629

Rafiei Sardooi, E., Azareh, A., Mesbahzadeh, T., Soleimani Sardoo, F., Parteli, E. J. R., & Pradhan, B. (2021). A hybrid model using data mining and multi-criteria decision-making methods for landslide risk mapping at Golestan Province, Iran. Environmental Earth Sciences, 80(15). https://doi.org/10.1007/s12665-021-09788-z

Rostami, M., Kheirandish, O., & Ansari, N. (2015). Minimizing maximum tardiness and delivery costs with batch delivery and job release times. Applied Mathematical Modelling, 39, 4909-4927. https://doi.org/10.1016/j.apm.2015.03.052

Rostami, M., Razmi, J., & Jolai, F. (2010). Designing a genetic algorithm to solve an integrated model in supply chain management using fuzzy goal programming approach. In: Ortiz, Á., Franco, R.D., & Gasquet, P.G. (eds) Balanced Automation Systems for Future Manufacturing Networks (BASYS). Springer. https://doi.org/10.1007/978-3-642-14341-0_20

Roy, B. (1968). Classement et choix en presence de points de vue multiples (la methode ELECTRE). Revue française d’automatique, d’informatique et de recherche opérationnelle. Recherche opérationnelle, 2(1), 57-75. DOI: https://doi.org/10.1051/ro/196802V100571

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234-281. https://doi.org/10.1016/0022-2496(77)90033-5

Sadeghi, J., Mousavi, S. M., & Niaki, S. T. A. (2016). Optimizing an inventory model with fuzzy demand, backordering, and discount using a hybrid imperialist competitive algorithm. Applied Mathematical Modelling, 40, 7318-7335. https://doi.org/10.1016/j.apm.2016.03.013

Saraçoglu, I., & Süer, G.A. (2018). Multi-objective fuzzy flow shop scheduling model in a manufacturing company. Procedia Manufacturing, 17, 214-221. https://doi.org/10.1016/j.promfg.2018.10.039

Smarandache, F. (1995). Neutrosophic Logic and Set. http://fs.gallup.unm.edu/neutrosophy.htm

Sutrisno, Widowati, & Sunarsih. (2019). Genetic algorithm approach for large scale quadratic programming of probabilistic supplier selection and inventory management problem. Journal of Physics: Conference Series, 1307. https://doi.org/10.1088/1742-6596/1307/1/012001

Tavana, M., Shaabani, A., Di Caprio, D., & Amiri, M. (2021). An integrated and comprehensive fuzzy multicriteria model for supplier selection in digital supply chains. Sustainable Operations and Computers, 2, 149-169. https://doi.org/10.1016/j.susoc.2021.07.008

Tezenji, F. R., Mohammadi, M., Pasandideh, S., & Koupaei, M. N. (2016). An integrated model for supplier location-selection and order allocation under capacity constraints in an uncertain environment. Scientia Iranica, International Journal of Science & Techology, 23(6), 3009-3025. https://doi.org/10.24200/SCI.2016.4008

Vahdani, B., Iranmanesh, S.H., Mousavi, S.M., & Abdollahzade, M. (2012). A locally linear neuro-fuzzy model for supplier selection in cosmetics industry. Applied Mathematical Modelling, 36, 4714-4727. https://doi.org/10.1016/j.apm.2011.12.006

Vardi, M., Neyestani, M., & Ghorbanian, A. (2019). Supplier selection and order allocation problem modeling with the aim of comparing incremental discounts versus wholesale discounts by using GA and NSGA algorithms. Journal Europeen des Systemes Automatises, 52(1), 23-34. https://doi.org/10.18280/jesa.520104

Wang, Y.-C., & Chen, T. (2021). A Bi-objective AHP-MINLP-GA approach for Flexible Alternative Supplier Selection amid the COVID-19 Pandemic. Soft Computing Letters, 3, 100016. https://doi.org/10.1016/j.socl.2021.100016

Wang, Y., Xi, C., Zhang, S., Zhang, W., & Yu, D. (2015). Combined Approach for Government E-Tendering using GA and TOPSIS with Intuitionistic Fuzzy Information. PLoS ONE, 10(7), 1-20. https://doi.org/10.1371/journal.pone.0130767

Wiecek, P. (2016). Intelligent approach to inventory control in logistics under uncertainty conditions. Transportation Research Procedia, 18, 164-171. https://doi.org/10.1016/j.trpro.2016.12.023

Zak, J., & Weglinski, S. (2014). The selection of the logistics center location based on MCDM/A methodology. Transportation Research Procedia, 3, 555-564. https://doi.org/10.1016/j.trpro.2014.10.034

Zhang, H., Deng, Y., Chan, F. T. S., & Zhang, X. (2013). A modified multi-criterion optimization genetic algorithm for order distribution in collaborative supply chain. Applied Mathematical Modelling, 37, 7855-7864. https://doi.org/10.1016/j.apm.2013.05.021

Zhu, N., Zhu, C., & Emrouznejad, A. (2020). A combined machine learning algorithms and dea method for measuring and predicting the efficiency of Chinese manufacturing listed companies. Journal of Management Science and Engineering. 6(4), 435-448. https://doi.org/10.1016/j.jmse.2020.10.001

Xidonas, P., Doukas, H., & Sarmas, E. (2021). A python-based multicriteria portfolio selection DSS. RAIRO - Operations Research, 55, S3009-S3034. https://doi.org/10.1051/ro/2020140

Zopounidis, C., & Pardalos, P. M. (Eds.). (2010). Handbook of multicriteria analysis (v. 103). Springer Science & Business Media. https://doi.org/10.1007/978-3-540-92828-7

Cómo citar

APA

Roldão Bastos, T. & Andrade Longaray, A. (2025). Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa. Innovar, 35(96), e104948. https://doi.org/10.15446/innovar.v35n96.104948

ACM

[1]
Roldão Bastos, T. y Andrade Longaray, A. 2025. Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa. Innovar. 35, 96 (abr. 2025), e104948. DOI:https://doi.org/10.15446/innovar.v35n96.104948.

ACS

(1)
Roldão Bastos, T.; Andrade Longaray, A. Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa. Innovar 2025, 35, e104948.

ABNT

ROLDÃO BASTOS, T.; ANDRADE LONGARAY, A. Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa. Innovar, [S. l.], v. 35, n. 96, p. e104948, 2025. DOI: 10.15446/innovar.v35n96.104948. Disponível em: https://revistas.unal.edu.co/index.php/innovar/article/view/104948. Acesso em: 28 dic. 2025.

Chicago

Roldão Bastos, Tatiane, y André Andrade Longaray. 2025. «Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa». Innovar 35 (96):e104948. https://doi.org/10.15446/innovar.v35n96.104948.

Harvard

Roldão Bastos, T. y Andrade Longaray, A. (2025) «Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa», Innovar, 35(96), p. e104948. doi: 10.15446/innovar.v35n96.104948.

IEEE

[1]
T. Roldão Bastos y A. Andrade Longaray, «Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa», Innovar, vol. 35, n.º 96, p. e104948, abr. 2025.

MLA

Roldão Bastos, T., y A. Andrade Longaray. «Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa». Innovar, vol. 35, n.º 96, abril de 2025, p. e104948, doi:10.15446/innovar.v35n96.104948.

Turabian

Roldão Bastos, Tatiane, y André Andrade Longaray. «Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa». Innovar 35, no. 96 (abril 23, 2025): e104948. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/innovar/article/view/104948.

Vancouver

1.
Roldão Bastos T, Andrade Longaray A. Meta-heurísticas para a tomada de decisão multicritério: revisão sistemática da literatura e oportunidades de pesquisa. Innovar [Internet]. 23 de abril de 2025 [citado 28 de diciembre de 2025];35(96):e104948. Disponible en: https://revistas.unal.edu.co/index.php/innovar/article/view/104948

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

295

Descargas

Los datos de descargas todavía no están disponibles.