Migración específica de N-nitrosaminas en productos elastoméricos
Specific migration of N-nitrosamines in elastomeric products
Migração específica de N-nitrosaminas em produtos elastoméricos
DOI:
https://doi.org/10.15446/rev.colomb.quim.v52n3.111531Palabras clave:
caucho, látex, N-nitrosaminas (es)rubber, latex, N-nitrosamines (en)
borracha, látex, N-nitrosaminas (pt)
Descargas
Para analizar la migración de N-nitrosaminas desde materiales elastoméricos de caucho, como chupos para biberones, y desde materiales elastoméricos de látex, como guantes y condones, se requieren técnicas de alta sensibilidad que permitan determinar si los materiales migran cantidades de N-nitrosaminas que superen el límite permitido por la regulación (LOD 10 mg/kg de material). Para ello, en este trabajo se implementó y validó un método de análisis de N-nitrosaminas: nitrosodimetilamina (NDMA), nitrosometiletilamina (NMEA), nitrosodietilamina (NDEA), nitrosopiridinamina (NPYR), nitrosodipropilamina (NDPA), nitrosofenilisopropilamina (NPIP) y nitrosodibutilamina (NDBA), mediante cromatografía de gases acoplada a un detector de espectrometría de masas (GC-MS), y se comparó la extracción de N-nitrosaminas por extracción líquido-líquido y por microextracción en fase sólida en su versión de espacio de cabeza (HS-SPME).
La extracción mediante HS-SPME permite la recuperación de las N-nitrosaminas de mayor peso molecular: NDPA, NPIP y NDBA, mientras que la extracción líquido-líquido resultó apropiada para la extracción y análisis de todas las N-nitrosaminas evaluadas en este trabajo. Se estableció que el límite de detección instrumental (LOD) para las N-nitrosaminas NDPA, NPIP y NDBA es de 3 a 6 mg/Kg empleando el método de monitoreo de ión selectivo (SIM). Este LOD se encuentra por debajo del límite de migración permitido por la regulación internacional.
Como aplicación del método se evaluó la migración de N-nitrosaminas en tres materiales elastoméricos: chupos de caucho para biberones, guantes y condones de látex. Todos los materiales presentaron resultados de migración de N-nitrosaminas por debajo del LOD permitido. Sin embargo, se evidenció la migración de otros compuestos potencialmente peligrosos para la salud como ftalatos y sustancias nitrosables.
To analyze the migration of N-nitrosamines from elastomeric rubber materials, such as baby bottle nipples, and from elastomeric latex materials, such as gloves and condoms, highly sensitive techniques are required to determine if the materials migrate amounts of N-nitrosamines that exceed the limit permitted by regulation (LOD 10 µg/kg of material). For this purpose, a method for analyze N-nitrosamines was implemented and validated in this work: nitrosodimethylamine (NDMA), nitrosomethylethylamine (NMEA), nitrosodiethylamine (NDEA), nitrosopyridinamide (NPYR), nitrosodibutylamine (NDBA), nitrosodipropylamine (NDPA), and nitrosophenylisopropylamine (NPIP), using gas chromatography coupled with mass spectrometry (GC-MS). The extraction of N-nitrosamines was compared using liquid-liquid extraction and headspace solid-phase microextraction (HS-SPME).
HS-SPME extraction allows for the recovery of higher molecular weight N-nitrosamines: NDPA, NPIP, and NDBA, while liquid-liquid extraction proved suitable for the extraction and analysis of all the N-nitrosamines evaluated in this study. It was established that the instrumental detection limit (LOD) for the N-nitrosamines NDPA, NPIP, and NDBA is between 3 and 6 µg/kg using the selective ion monitoring (SIM) method. This LOD is below the migration limit permitted by international regulations.
As an application of the method, the migration of N-nitrosamines was evaluated in three elastomeric materials: rubber baby bottle nipples, latex gloves, and condoms. All materials showed N-nitrosamine migration results below the permitted LOD. However, the migration of other potentially health-hazardous compounds, such as phthalates and nitrosable substances, was evident.
Para analisar a migração de N-nitrosaminas a partir de materiais de borracha elastomérica, como bicos de mamadeira, e de materiais de látex elastomérico, como luvas e preservativos, são necessárias técnicas altamente sensíveis para determinar se os materiais migram quantidades de N-nitrosaminas que excedem o limite permitida pela regulamentação (LOD 10 µg/kg de material). Para tal, foi implementado e validado neste trabalho um método para analisar N-nitrosaminas: nitrosodimetilamina (NDMA), nitrosometiletilamina (NMEA), nitrosodietilamina (NDEA), nitrosopiridinamida (NPYR), nitrosodibutylamina (NDBA), nitrosodipropilamina (NDPA) e nitrosofenilisopropilamina (NPIP), usando cromatografia gasosa acoplada à espectrometria de massa (GC-MS). A extração de N-nitrosaminas foi comparada usando extração líquido-líquido e microextração em fase sólida por headspace (HS-SPME).
A extração por HS-SPME permite a recuperação de N-nitrosaminas de maior peso molecular: NDPA, NPIP e NDBA, enquanto a extração líquido-líquido provou ser adequada para a extração e análise de todas as N-nitrosaminas avaliadas neste estudo. Foi estabelecido que o limite de detecção instrumental (LOD) para as N-nitrosaminas NDPA, NPIP e NDBA é entre 3 e 6 µg/kg usando o método de monitoramento de íon seletivo (SIM). Este LOD está abaixo do limite de migração permitido pelas regulamentações internacionais.
Como aplicação do método, a migração de N-nitrosaminas foi avaliada em três materiais elastoméricos: bicos de borracha para mamadeiras, luvas de látex e preservativos. Todos os materiais apresentaram resultados de migração de N-nitrosaminas abaixo do LOD permitido. No entanto, a migração de outros compostos potencialmente prejudiciais à saúde, como ftalatos e substâncias nitrosáveis, foi evidente.
Referencias
[1] J. C. Beard y T. M. Swager, “An Organic Chemist's Guide to N-Nitrosamines: Their Structure, Reactivity, and Role as Contaminants”, The Journal of Organic Chemistry, vol. 86, pp. 2037−2057, 2021. DOI: https://doi.org/10.1021/acs.joc.0c02774
[2] K. Li et al., “Estimated cancer risks associated with nitrosamine contamination in commonly used medications”, Int. J. Environ. Res. Public Health, vol. 18, nro. 18, pp. 9465, 2021. DOI: https://doi.org/10.3390/ijerph18189465
[3] A. Thresher, R. Foster, D. J. Ponting, S. A. Stalford, R. E. Tennant y R. Thomas, “Are all nitrosamines concerning? A review of mutagenicity and carcinogenicity data”, Regul Toxicol Pharmacol, vol. 116, pp. 104749, 2020. DOI: https://doi.org/10.1016/j.yrtph.2020.104749
[4] E. S. Carlson, P. Upadhyaya y S. S. Hecht, “A general method for detecting Nitrosamide formation in the in vitro metabolism of nitrosamines by Cytochrome P450s”, J. Vis. Exp., vol. 127, pp. 56312, 2017. DOI: https://doi.org/10.3791/56312
[5] United States Environmental Protection Agency, “Methods for organic chemical analysis of municipal and industrial wastewater. Method 607: Nitrosamines”, 1984. [En línea]. Disponible en: https://www.epa.gov/sites/default/files/2015-09/documents/method_607_1984.pdf. [Último acceso: 12/07/2024]
[6] D. Schrenk et al., “Risk assessment of N-nitroamines in food”, EFSA Journal, vol. 21, nro. 3, 2023. DOI: https://doi.org/10.2903/j.efsa.2023.7884
[7] World Health Organization (WHO), “Good manufacturing practices considerations for the prevention and control of nitrosamine contamination in pharmaceutical products. [En línea]. Disponible en: https://cdn.who.int/media/docs/default-source/medicines/norms-and-standards/current-projects/qas24_943_gmp_nitrosamines_forpublic52f95166-1c71-4cc2-a499-05bc4967bf14.pdf?sfvrsn=2140e3f4_2. [Último acceso: 12/07/2024]
[8] S. S. Herrmann, L. Duedahl-Olesen y K. Granby, “Simultaneous determination of volatile and non-volatile nitrosamines in processed meat products by liquid chromatography tandem mass spectrometry using atmospheric pressure chemical ionisation and electrospray ionisation”, Journal of Chromatography A., vol. 1330, pp. 20−29, 2014. DOI: https://doi.org/10.1016/j.chroma.2014.01.009
[9] J. A. McDonald, N. B. Harden, L. D. Nghiem y S. J. Khan, “Analysis of N-Nitrosamines in Water by Isotope Dilution Gas Chromatography-Electron Ionisation Tandem Mass Spectrometry”, Talanta, vol. 99, pp. 146−154, 2012. DOI: http://dx.doi.org/10.1016/j.talanta.2012.05.032
[10] S. H. Chang, H. Y. Ho, Ch. Ch. Chang, Ch. Z. Zang, Y. H. Hsu, M. Ch. Lin, S. H. Tseng y D. Y. Wang, “Evaluation and optimization of a HS-SPME-assisted GC-MS/MS method for monitoring nitrosamine impurities in diverse pharmaceuticals”, Journal of Pharmaceutical and Biomedical Analysis, vol. 221, pp. 115003, 2022. DOI: https://doi.org/10.1016/j.jpba.2022.115003
[11] D. Feng, L. Liu, L. Zhao, Q. Zhou y T. Tan, “Evaluation of Simulant Migration of Volatile Nitrosamines from Latex Gloves and Balloons by HS-SPME–GC–MS”, Journal of Chromatographic Science, vol. 50, nro. 8, pp. 733–738, 2012. DOI: https://doi.org/10.1093/chromsci/bms057
[12] International Organization for Standardization, Condoms — Determination of nitrosamines migrating from natural rubber latex condoms. ISO 29941: 2010, Geneve, 2010.
[13] C. Burnier y G. Massonnet, “Forensic analysis of condom traces: Chemical considerations and review of the literature”, Forensic Science International, vol. 310, pp. 110255, 2020. DOI: https://doi.org/10.1016/j.forsciint.2020.110255
[14] P. Li, H. Bai, H. Li, M. Chen, Q. Lü y Q. Zhang, “Determination of migration of 15 N -nitrosamines and N -nitrosatable substances from children’s latex articles by gas chromatography-tandem mass spectrometry using solid phase extraction”, Chinese J. Chromatogr., vol. 32, nro. 1, pp. 81−91, 2014. DOI: https://doi.org/10.3724/SP.J.1123.2013.08032
[15] R. Li, Y. Liu, Z. Wang, Q. Zhang, H. Bai y Q. Lv, “High resolution GC–Orbitrap MS for nitrosamines analysis: Method performance, exploration of solid phase extraction regularity, and screening of children’s products”, Microchemical Journal, vol. 162, 2021. DOI: https://doi.org/10.1016/j.microc.2020.105878
[16] M. Mutsuga, M. Yamaguchi y Y. Kawamura, “Analysis of N-Nitrosamine Migration from Rubber Teats and Soothers”, American Journal of Analytical Chemistry, vol. 4, nro. 6, 2013. DOI: https://doi.org/10.4236/ajac.2013.46035
[17] J. B. Hwang, J. E. Lee, E. Kim, K. Y. Eom, H. Kim y S. Lee, “Analysis of N-nitrosamines and N-nitrosatable substances from baby bottle rubber teats by liquid chromatography tandem mass spectrometry”, Food Additives and Contaminants: Part A, vol. 40, nro. 4, pp. 518−527, 2023. DOI: https://doi.org/10.1080/19440049.2023.2193276
[18] Unión Europea, “Directiva 93/11/CEE de la Comisión, de 15 de marzo de 1993, relativa a la cesión de N-nitrosaminas y de sustancias N-nitrosables por las tetinas y chupetes de elastómeros o caucho”, Diario Oficial de las Comunidades Europeas, 1993. [En linea]. Disponible en: https://op.europa.eu/es/publication-detail/-/publication/354de978-8111-4562-a90b-abf38b151a48. [Último acceso: 12/07/2024].
[19] Ministerio de Salud y Protección Social de Colombia, “Resolución 4143 de 2012”, 2012. [En línea]. Disponible en: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=50951. [Último acceso: 12/07/2024].
[20] F. Kühne et al., “N-nitrosamines migration from food contact materials into food simulants: analysis and quantification by means of HPLC-APCI-MS/ MS”, Food Additives and Contaminants: Part A, vol. 35, nro. 4, pp. 792−805, 2018. DOI: https://doi.org/10.1080/19440049.2017.1414959
[21] A. C. Batista Junios, Y. Arrates Rocha, G. Guimaraes Souza y A. Rodrigues Chaves, “Development of a reliable method for determination of N-nitrosamines in medicines using disposable pipette extraction and HPLC-MS analysis”, Anal. Methods, vol. 16, pp. 3318−3330, 2024. DOI: https://doi.org/10.1039/d4ay00554f
[22] J. H. Sung et al., “Liquid chromatography tandem mas spectrometry determination of N-nitrosamines released from rubber or elastomer teats and soothers”, Food Additives and Contaminants: Part A, vol. 27, nro. 12, pp. 1745−1754, 2010. DOI: https://doi.org/10.1080/19440049.2010.508184
[23] M. A. Monteiro et al., “Investigation of Carcinogenic Impurities of N-Nitrosamines in Sartan Pharmaceutical Products Marketed in Brazil: Development and Validation of Method Based on High-Performance Liquid Chromatography-Tandem Mass Spectrometry”, Journal of Pharmaceutical Sciences, vol. 112, nro. 5, pp. 1305−1314, 2023. DOI: https://doi.org/10.1016/j.xphs.2023.01.005
[24] N. Papadasu y R. Kotanka, “A Novel Validated GC–MS/MS Method for the Estimation of N-Nitroso Dimethyl Amine and N-Nitroso Diethyl Amine in Zidovudine”, Journal of Chromatographic Science, vol. 62, nro. 5, pp. 399–405, 2024. DOI: https://doi.org/10.1093/chromsci/bmae008
[25] M. K. Parr y J. F. Josepg, “NDMA impurity in valsartan and other pharmaceutical products: Analytical methods for the determination of N-nitrosamines”, Journal of Pharmaceutical and Biomedical Analysis, vol. 164, pp. 536−549, 2019. DOI: https://doi.org/10.1016/j.jpba.2018.11.010
[26] D. A. Ahumada, C. Paredes, J. Abella e I. González, Validación de métodos en análisis químico cuantitativo. Instituto Nacional de Metrología. Subdirección de Metrología Química y Biología, Bogotá, Instituto Nacional de Meteorología, 2023. Disponible en: https://inm.gov.co/web/wp-content/uploads/2023/05/Guia_ValidacionMetodosAnalisisQuimicoCuantitativo-16.pdf
[27] Asociación Española de Normalización y Certificación, Artículos de puericultura. Métodos para determinar la liberación de N-Nitrosaminas y sustancias N-Nitrosables por las tetinas y los chupetes de caucho o elastómeros. UNE-EN 12868:2018, Madrid, AENOR, 2018.
[28] C. G. Marrubini et al., “Experimental designs for solid-phase microextraction method development in bioanalysis: A review”, Analytica Chimica Acta, vol. 1119, pp. 77−100, 2020. DOI: https://doi.org/10.1016/j.aca.2020.04.012
[29] W. T. Rainey, W. H. Christie y W. Lijinsky, “Mass spectrometry of N-nitrosamines”, Biomedical Mass Spectrometry, vol. 5, nro. 6, pp. 395−408, 1978. DOI: https://doi.org/10.1002/bms.1200050606
[30] J. W. Apsimon y J. D. Cooney, “Some Aspects of the Mass Spectra of N-Nitrosamines”, Canadian Journal of Chemistry, vol. 49, pp. 1367−1371, 1971. DOI: https://doi.org/10.1139/v71-227
[31] R. Shirey y M. Halpenny, “SPME Adsorbent Fibers with a Nitinol-Core for an Enhanced Fiber Reproducibility”. [En línea]. Disponible en: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/211/722/nit-reproducibility-wp6311en-mk.pdf. [Último acceso: 12/07/2024].
[32] Scientific Committee on Consumer Safety Members, “SCCS OPINION on Butylated Hydroxytoluene (BHT)”, Regulatory Toxicology and Pharmacology, vol. 138, supl. C, 2021. DOI: https://doi.org/10.1016/j.yrtph.2022.105312
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Diana Cristina Sinuco León, DIEGO ALEJANDRO MORA ROJAS, FELIPE RICO SARMIENTO
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC. Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).