Published

2008-01-01

Mathematical models of membrane fouling in cross-flow micro-filtration

Modelos matemáticos de la colmatación de membranas en microfiltración tangencial

DOI:

https://doi.org/10.15446/ing.investig.v28n1.14876

Keywords:

fouling, membrane, microfiltration, mathematical model, concentration polarisation, pore blocking, shear-induced diffusion, lateral migration (en)
colmatación, membranas, microfiltración, modelos matemáticos, polarización de la concentración, bloqueo de poro, difusión de corte inducido, migración lateral (es)

Authors

  • Mónica Jimena Ortíz Jerez Universidad del Valle
  • Carlos Antonio Vélez Pasos Universidad del Valle
  • Edinson Franco Mejía Universidad del Valle

The greatest difficulty arising during cross-flow micro-filtration is the formation of a cake layer on the membrane surface (also called fouling), thereby affecting system performance. Fouling has been related to permeate flux decay resulting from changes in operating variables. Many articles have been published in an attempt to explain this phenomenon but it has not yet been fully understood because it depends on specific solution/membrane interactions and differing parameters. This work was aimed at presenting an analytical review of recently published mathematical models to explain fouling. Although the reviewed models can be adjusted to any type of application, a simple “concentration polarisation” model is advisable in the particular case of tropical fruit juices for describing the insoluble solids being deposited on membrane surface.

La mayor dificultad durante la microfiltración tangencial es la formación de una capa de torta en la superficie membranaria, también llamada “colmatación”, la cual afecta el desempeño del sistema. La colmatación se ha relacionado al decaimiento del flux de permeado como resultado de cambios en las variables de operación. Muchos trabajos se han publicado para explicar este fenómeno, pero aún no se ha entendido totalmente porque depende de interacciones específicas solución/membrana y de diversos parámetros. El objeto de este trabajo es presentar una revisión analítica de los modelos matemáticos recientemente publicados para explicar el fenómeno de colmatación. Aunque los modelos revisados se ajustan a cualquier tipo de aplicación, en el caso particular de jugos de frutas tropicales, un modelo sencillo de “polarización de la concentración” es conveniente para describir la deposición de los sólidos insolubles en la superficie de la membrana.

References

Agashichev, S. P., Concentration polarization in cross-flow microfiltration under the conditions of shear-induced diffusion., Desalination, 200, 2006, pp. 346-348. DOI: https://doi.org/10.1016/j.desal.2006.03.373

Altena, F. W., Belfort, G., Lateral migration of spherical particles in porous flow channels: applications to membrane filtration., Chem. Eng. Sci., 89 (2), 1984, pp. 343-355. DOI: https://doi.org/10.1016/0009-2509(84)80033-0

Altmann, J., Ripperger, S., Particle deposition and layer formation at the crossflow microfiltration., J. Memb. Sci., 124, 1991, pp. 119-128. DOI: https://doi.org/10.1016/S0376-7388(96)00235-9

Bacchin, P., Si-Hassen, D., Starov, V., Clifton, M.J. y Aimar, P., A unifying model for concentration polarization, gel layer formation and particle deposition in cross-flow membrane filtration of colloidal suspensions., Chem. Eng. Sci., 57, 2002, pp. 77-91. DOI: https://doi.org/10.1016/S0009-2509(01)00316-5

Balakrishnan, M., Dua, M., Bhagat, J. J., Effect of operating parameters on sugarcane juice ultrafiltration: results of a field experience., Sep. Pur. Tech., 19, 2000, pp. 209- 220. DOI: https://doi.org/10.1016/S1383-5866(00)00054-X

Bird, M. R., Barttlet, M., Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate., J. Food Eng., 53, 2002, pp. 143-152. DOI: https://doi.org/10.1016/S0260-8774(01)00151-0

Bird, R. B., Stewart, W. E., Lightfoot, E. N., Fenómenos de Transporte., Editorial Reverté, S.A., México, 1993.

Bolton, G., LaCasse, D., Kuriyel, R., Combined models of membrane fouling: Development and application to microfiltration and ultrafiltration of biological fluids., J. Memb. Sci., 277, 2005, pp. 75-84. DOI: https://doi.org/10.1016/j.memsci.2004.12.053

Carneiro, L., dos Santos Sa., I., dos Santos Gomes, F., Matta, V. M., Cabral., L. M. C., Cold sterilization and clarification of pinneapple juice by tangential microfiltration., Desalination 148, 2002, pp. 93-98. DOI: https://doi.org/10.1016/S0011-9164(02)00659-8

Carrère, H., Blaszkowa, F., Roux de Balmann, H., Modelling the microfiltration of lactic acid fermentation broths and comparison of operating modes., Desalination, 145, 2002, pp. 201-206. DOI: https://doi.org/10.1016/S0011-9164(02)00409-5

Choi, H., Zhang, K., Dionysiou, D. D., Oerther, D.B., Sorial, G. A., Influence of cross-flow velocity on membrane performance during filtration of biological suspension., J. Memb. Sci., 248, 2005, pp. 189-199. DOI: https://doi.org/10.1016/j.memsci.2004.08.027

Cross, R. A., Optimum process designs for ultrafiltration and crossflow microfiltration systems., Desalination, 145, 2002, pp. 59-163. DOI: https://doi.org/10.1016/S0011-9164(02)00402-2

Cumming, I. W., Holdich, R. G., Ismail, B., Prediction of deposit depth and transmembrane pressure during crossflow microfiltration. J. Memb. Sci., 154, 1999, pp. 229-237. DOI: https://doi.org/10.1016/S0376-7388(98)00293-2

Curcio, S., Calabrò, V., Iorio, G., A theoretical analysis of transport phenomena in membrane concentration of liquorice solutions: a FEM approach., J. Food Eng., 71, 2005, pp. 252-264. DOI: https://doi.org/10.1016/j.jfoodeng.2004.11.005

Curcio, S., Calabrò, V., Iorio, G., Cindío, B., Fruit juice concentration by membranes: effect of rheological properties on concentration polarization phenomena., J. Food Eng., 48, 2001, pp. 235-241. DOI: https://doi.org/10.1016/S0260-8774(00)00163-1

Davis, R. H., Leighton, D. T., Shear-induced transport of a particle layer along a porous wall., Chem. Eng. Sci. 42 (2), 1987, pp. 275-281. DOI: https://doi.org/10.1016/0009-2509(87)85057-1

Davis, R. H., Sherwood, J. D., A similarity solution for steady-state crossflow microfiltration., Chem. Eng. Sci. 45 (11), 1990, pp. 3203-3209. DOI: https://doi.org/10.1016/0009-2509(90)80212-W

Djuric, M., Gyura, J., Zavargo, Z., Seres, Z., Tekic, M., Modelling of ultrafiltration of non-sucrose compounds in sugar beet processing., J. Food Eng., 65, 2004, pp. 73-82. DOI: https://doi.org/10.1016/j.jfoodeng.2003.12.005

Duclos-Orsello, C., Weiyi, L., Chia-Chi, H., A three mechanism model to describe fouling of microfiltration mem branes., J. Memb. Sci., 280, 2006, pp. 856–866. DOI: https://doi.org/10.1016/j.memsci.2006.03.005

Eckstein, E. C., Bailey, D. G., Shapiro, A. H., Self diffusion of particles in shear flow of a suspension., J. Fluid Mech. 79, 1977, pp. 191-208. DOI: https://doi.org/10.1017/S0022112077000111

Green, G., Belfort, G., Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model., Desalination, 35, 1980, pp.129-147. DOI: https://doi.org/10.1016/S0011-9164(00)88607-5

Hermia, J., Constant pressure blocking filtration law: Application to power law non-newtonians fluids., Trans. I. Chem. E., 60, 1982, pp.183-188.

Hwang, K-J., Lin, T-T., Effect of morphology of polymeric membrane on the performance of cross-flow micro filtration., J. Memb. Sci. 199, 2002, pp. 41-52. DOI: https://doi.org/10.1016/S0376-7388(01)00675-5

Hwang, K.-J., Wu, R.-M., Use of models in the design of cross-flow microfilters for the purification of protein from bio-mixtures., J. Chin. Inst. Chem. Eng. ARTICLE IN PRESS.

Jiraratananon, R., Chanachai, A., A study fouling in the ultrafiltration of passion fruit juice., J. Memb. Sci. 111, 1996, pp. 39-48. DOI: https://doi.org/10.1016/0376-7388(95)00270-7

Jonsson, G., Prádanos, P., Hernández, A., Fouling phenomena in microporous membranes., Flux decline kinetics and structural modifications. J. Memb. Sci. 112, 1996, pp. 171-183. DOI: https://doi.org/10.1016/0376-7388(95)00286-3

Kawakatsu, T., Nakajima, M., Nakao, S., Kimura, S., Three dimensional simulation of random packing and pore blocking phenomena during microfiltration., Desalination, 101, 1995, pp. 203-209. DOI: https://doi.org/10.1016/0011-9164(95)00023-U

Knutsen, J. S., Davis, R. H., Deposition of foulant particles during tangential flow filtration., J. Memb. Sci., 271, 2006, pp. 101-113. DOI: https://doi.org/10.1016/j.memsci.2005.06.060

Kromkamp, J., Bastiaanse, A., Swarts, J., Brans, G., van der Sman, R. G. M., Boom, R. M., A suspension model for hydrodynamics and concentration polarization in crossflow microfiltration., J. Memb. Sci. 253, 2005, pp. 67-79. DOI: https://doi.org/10.1016/j.memsci.2004.12.028

Lee, Y., Clark, M., Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions. J. Memb. Sci. 149, 1998, pp. 181-202. DOI: https://doi.org/10.1016/S0376-7388(98)00177-X

Leighton, D. T., Acrivos, A., Measurement of the shear induced coefficient of self-diffusion in concentrated suspension spheres. J. Fluid Mech., 177, 1987, pp. 109- 131. DOI: https://doi.org/10.1017/S0022112087000880

Mondor, M., Moresoli, C., Experimental verification of the shear-induced hydrodinamic diffusion model of crossflow microfiltration, with consideration the transmembrane pressure axial variation., J. Memb. Sci. 175, 2000, pp. 119-137. DOI: https://doi.org/10.1016/S0376-7388(00)00410-5

Nassehi, V., Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration., Chem. Eng. Sci., 53 (6), 1998, pp. 1253-1265. DOI: https://doi.org/10.1016/S0009-2509(97)00443-0

Riedl, K., Girard, B., Lencki, R. W., Influence of membrane structure in fouling layer morphology during apple juice clarification., J. Memb. Sci., 139, 1998, pp. 155-166. DOI: https://doi.org/10.1016/S0376-7388(97)00239-1

Ripperger, S., Altmann, J., Crossflow microfiltration – state of art., Sep. Pur. Tech., 26, 2002, pp. 19-31. DOI: https://doi.org/10.1016/S1383-5866(01)00113-7

Romero, C. A., Davis, R. H., Global model of crossflow microfiltration based on hydrodynamic particle diffusion., J Memb. Sci., 39, 1988, pp. 157-185. DOI: https://doi.org/10.1016/S0376-7388(00)80987-4

Romero, C. A., Davis, R. H., Transient model of crossflow microfiltration., Chem. Eng. Sci., 45 (1), 1990, pp. 13-25. Song, L., A new model for the calculation of the limiting flux in ultrafiltration., J. Memb. Sci. 144, 1998a, pp, 173- 185. DOI: https://doi.org/10.1016/0009-2509(90)87076-5

Song, L., Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling., J. Memb. Sci. 139, 1998b, pp. 183-200. DOI: https://doi.org/10.1016/S0376-7388(97)00263-9

Stamatakis, K., Tien, C., A simple model of cross-flow filtration based on particle adhesion., AIChE J., 39 (8), 1993, pp.1292-1302. DOI: https://doi.org/10.1002/aic.690390805

Thomassen, J. K., Faraday, D. B. F., Underwood, B. O., Cleaver, J. A. S., The effect of varying transmembrane pressure and crossflow velocity on the microfiltration fouling of a model beer., Sep. Pur. Tech., 41, 2005, pp. 91-100. DOI: https://doi.org/10.1016/j.seppur.2004.05.002

Vaillant, F., Cisse, M., Chaverri, M., Perez, A., Dornier, M., Viquez, F., Dhuique-Mayer, C., Clarification and concentration of melon juice using membrane processes., Inn. Food Sci. Eng. Tech., 6, 2005, pp. 213-220. DOI: https://doi.org/10.1016/j.ifset.2004.11.004

Vaillant, F., Perez, A., M., Viquez, F., Microfiltración tangencial: una alternativa innovadora para la transformación de frutas tropicales., La Alimentación Latinoamericana 252, 2004, pp. 38-46.

Vaillant, F., Millan, A., Dornier, M., Decloux, M., Reynes, M., Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration. J. Food Eng., 48, 2001, pp. 83-90. DOI: https://doi.org/10.1016/S0260-8774(00)00152-7

Vaillant, F., Millán, P., O’Brien, G., Dornier, M., Decloux, M., Reynes, M., Crossflow microfiltration of passion fruit juice after partial enzymatic liquefaction., J. Food Eng., 42, 1999, pp. 215-224. DOI: https://doi.org/10.1016/S0260-8774(99)00124-7

Vélez, C., Franco, E., González, J. A., Nuevos procesos membranarios aplicados a frutas tropicales-Ajustes hacia la fase industrial., Informe final de la automatización. Proyecto COLCIENCIAS-UNIVALLE-CIRAD-PASSICOL, Cali, 2007.

Vyas, H. K., Bennett, R. J., Marshall, A. D., Performance of crossflow microfiltration during constant transmembrane pressure and constant flux operations., Int. Dairy J. 12, 2002, pp. 473-479. DOI: https://doi.org/10.1016/S0958-6946(02)00020-1

Wang, B. J., Wei, T. C., Yu, Z. R., Effect of operating temperature on component distribution of West Indian cherry juice in a microfiltration system., LWT, 38, 683- 689, 2005. DOI: https://doi.org/10.1016/j.lwt.2004.09.002

Wang, L., Song, L., Flux decline in crossflow microfiltration and ultrafiltration: experimental verification of fouling dynamics., J. Memb. Sci., 160, 1999, pp. 41-50. DOI: https://doi.org/10.1016/S0376-7388(99)00075-7

Wiley, D. E., Fletcher, D. F., Techniques for computational fluid dynamics modeling of flow in membrane channels., J. Memb. Sci., 211, 2003, pp. 127-137. DOI: https://doi.org/10.1016/S0376-7388(02)00412-X

Ye, Y., Le Clech, V., Fane, A. G., Evolution of fouling during crossflow filtration of model EPS solutions., J. Memb. Sci., 264, 2005, pp. 190-199. DOI: https://doi.org/10.1016/j.memsci.2005.04.040

Youn, K-S., Hong, J-H., Bae, D-H., Kim, S-J., Kim, S-D., Effective clarifying process of reconstituted apple juice using membrane filtration with filter-aid pretreatment., J. Memb. Sci., 228, 2004, pp. 179-186. DOI: https://doi.org/10.1016/j.memsci.2003.10.006

Yu, J., Lencki, W., Effect of enzyme treatments on the fouling behavior of apple juice during microfiltration., J. Food Eng., 63, 2004, pp. 413-423. DOI: https://doi.org/10.1016/j.jfoodeng.2003.08.013

Zydney, L., Colton, C. K., A concentration polarization model for the filtrate flux in crossflow microfiltration of particulate suspensions., Chem. Eng. Comm., 47, 1986, pp. 1-21. DOI: https://doi.org/10.1080/00986448608911751

How to Cite

APA

Ortíz Jerez, M. J., Vélez Pasos, C. A. and Franco Mejía, E. (2008). Mathematical models of membrane fouling in cross-flow micro-filtration. Ingeniería e Investigación, 28(1), 123–132. https://doi.org/10.15446/ing.investig.v28n1.14876

ACM

[1]
Ortíz Jerez, M.J., Vélez Pasos, C.A. and Franco Mejía, E. 2008. Mathematical models of membrane fouling in cross-flow micro-filtration. Ingeniería e Investigación. 28, 1 (Jan. 2008), 123–132. DOI:https://doi.org/10.15446/ing.investig.v28n1.14876.

ACS

(1)
Ortíz Jerez, M. J.; Vélez Pasos, C. A.; Franco Mejía, E. Mathematical models of membrane fouling in cross-flow micro-filtration. Ing. Inv. 2008, 28, 123-132.

ABNT

ORTÍZ JEREZ, M. J.; VÉLEZ PASOS, C. A.; FRANCO MEJÍA, E. Mathematical models of membrane fouling in cross-flow micro-filtration. Ingeniería e Investigación, [S. l.], v. 28, n. 1, p. 123–132, 2008. DOI: 10.15446/ing.investig.v28n1.14876. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14876. Acesso em: 26 mar. 2025.

Chicago

Ortíz Jerez, Mónica Jimena, Carlos Antonio Vélez Pasos, and Edinson Franco Mejía. 2008. “Mathematical models of membrane fouling in cross-flow micro-filtration”. Ingeniería E Investigación 28 (1):123-32. https://doi.org/10.15446/ing.investig.v28n1.14876.

Harvard

Ortíz Jerez, M. J., Vélez Pasos, C. A. and Franco Mejía, E. (2008) “Mathematical models of membrane fouling in cross-flow micro-filtration”, Ingeniería e Investigación, 28(1), pp. 123–132. doi: 10.15446/ing.investig.v28n1.14876.

IEEE

[1]
M. J. Ortíz Jerez, C. A. Vélez Pasos, and E. Franco Mejía, “Mathematical models of membrane fouling in cross-flow micro-filtration”, Ing. Inv., vol. 28, no. 1, pp. 123–132, Jan. 2008.

MLA

Ortíz Jerez, M. J., C. A. Vélez Pasos, and E. Franco Mejía. “Mathematical models of membrane fouling in cross-flow micro-filtration”. Ingeniería e Investigación, vol. 28, no. 1, Jan. 2008, pp. 123-32, doi:10.15446/ing.investig.v28n1.14876.

Turabian

Ortíz Jerez, Mónica Jimena, Carlos Antonio Vélez Pasos, and Edinson Franco Mejía. “Mathematical models of membrane fouling in cross-flow micro-filtration”. Ingeniería e Investigación 28, no. 1 (January 1, 2008): 123–132. Accessed March 26, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14876.

Vancouver

1.
Ortíz Jerez MJ, Vélez Pasos CA, Franco Mejía E. Mathematical models of membrane fouling in cross-flow micro-filtration. Ing. Inv. [Internet]. 2008 Jan. 1 [cited 2025 Mar. 26];28(1):123-32. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14876

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Naveen G. Jesubalan, Garima Thakur, Anurag S. Rathore. (2023). Deep neural network for prediction and control of permeability decline in single pass tangential flow ultrafiltration in continuous processing of monoclonal antibodies. Frontiers in Chemical Engineering, 5 https://doi.org/10.3389/fceng.2023.1182817.

Dimensions

PlumX

Article abstract page views

616

Downloads