Avances más recientes sobre la aplicación de la altimetría radar por satélite en hidrología. Caso de la cuenca amazónica
The most recent satellite radar altimetry applications in hydrology. The case of the Amazon basin
DOI:
https://doi.org/10.15446/ing.investig.v28n3.15131Keywords:
altimetría radar, estaciones virtuales, curvas de gasto, modelación hidrológica, cuenca amazónica (es)radar altimetry, virtual gauging station, rating curve, hydrological modelling, Amazon basin (en)
Downloads
El presente artículo sintetiza los principios de la altimetría radar por satélite y presenta las aplicaciones más relevantes que dicha tecnología ha aportado al estudio de aguas superficiales continentales bajo un dominio que se comienza a conocer como hidrología espacial. Dentro de estos, uno de los más importantes tiene que ver con la generación de estaciones virtuales (intersección entre el barrido del satélite y un cuerpo de agua: río, lago, mar interior). Dichas estaciones están siendo actualmente utilizadas como mecanismo de apoyo para el monitoreo hidrológico, especialmente, en lo referente a la densificación de las redes hidrométricas instaladas in situ. Adicionalmente, estas pueden ser caracterizadas con datos provenientes del espacio de la misma manera en que son caracterizadas las estaciones in situ procurando información de carácter hidráulico (pendiente del fondo del cauce, profundidad del flujo cero, coeficiente de Manning, entre otros) que hasta el momento sólo podía ser deducida a partir de mediciones directas en campo.
This paper summarises the principles of satellite radar altimetry and presents this technology’s most important applications for analysing continental surface water within an area known as spatial hydrology; generating virtual gauging stations is one of its most important applications (intersection between satellite tracking and bodies of water: rivers, lakes, inland seas). These stations are currently being used for supporting hydrological monitoring, especially in increasing in-situ gauging station network density. Such spatial data-based virtual stations could thus be characterised in the same way as in-situ gauging stations producing hydraulic data (bed slope, zero flow depth, Manning coefficient, etc) which, until now, could only be directly obtained from in-situ measurements.
References
Alsdorf, D., Lettenmaier, D., Vörösmarty, C., The Need for Global Satellitebased Observations of Terrestrial Surface Waters., EOS Transactions, American Geophysical Union 84, 29, 2003, pp. 269–280. DOI: https://doi.org/10.1029/2003EO290001
AVISO User Handbook., Merged TOPEX/Poseidon Products (GDR Ms)., 3a Edición, AVI-NT-02-101-CN, Toulouse, 1996.
Bjerklie, D., Dingman, S., Vorosmarty, C., Bolster, C., Congalton, R., Evaluating the potential for measuring river discharge from space., Journal of Hydrology, Vol. 278, No. 1-4, 2003, pp. 17- 38. DOI: https://doi.org/10.1016/S0022-1694(03)00129-X
Benveniste, J., Berry, P. A., Freeman, J. A., Smith, R., Envisat measuring global rivers and lakes level in near real time., Geophysical Research Abstracts, 9, 2007.
Berry, P. A., Pinnock R. A., The potential contribution of satellite altimetry to retrieval of the global hydrology runoff budget., Geophysical Research Abstracts, 5, 2003.
Birkett, C. M., Radar altimetry: a new concept in monitoring lake level changes., EOS Trans., AGU 75, 24, 1994, pp. 273-275. DOI: https://doi.org/10.1029/94EO00944
Birkett, C. M., The contribution of Topex/Poseidon to the global monitoring of climatically sensitive lakes., J. Geophys. Res., 100, C12, 1995a, pp. 25179-25204. DOI: https://doi.org/10.1029/95JC02125
Birkett, C. M., The Global Remote Sensing of Lakes, Wetlands and Rivers for Hydrological and Climate Research., IGARSS conference, IEEE, Firenze, 1995b, pp. 1979-1981.
Birkett, C. M., Murtugudde, R., Allan, T., Indian Ocean climate event brings floods to east Africa’s lakes and the Sudd Marsh., Geophys. Res. Lett., 26, 1999, pp. 1031-1034. DOI: https://doi.org/10.1029/1999GL900165
Birkett, C. M., Synergistic remote sensing of Lake Chad: Variability of basin inundation., Remote Sensing of Environment, 72, 2000, pp. 218-236. DOI: https://doi.org/10.1016/S0034-4257(99)00105-4
Birkett, C. M., Mertes, L. A. K., Dunne, T., Costa, M., Jasinski, J., Altimetric remote sensing of the Amazon: Application of satellite radar altimetry., JGR, 107, (D20), 2002, 8059, 10.1029/ 2001JD000609. DOI: https://doi.org/10.1029/2001JD000609
Brisset, L., La calotte Est Antarctique observée par l’altimétrie ERS 1: aspects stationnaire et dynamique., Tesis doctoral de la Univ. D. Diderot, Paris VII, 1996, pp. 216.
Brooks, R. L., Lake elevation from satellite radar altimetry from a validation area in Canada., Reporte, Geosci. Res., 1982.
Calmant, S., Seyler, F., Continental surface waters from satellite altimetry., Comptes Rendus Geosciences, 338, 14-15, 2006, pp. 1113-1122. DOI: https://doi.org/10.1016/j.crte.2006.05.012
Cazenave, A., Bonnefond, P., DoMinh, K., Caspian Sea level from Topex/Poseidon altimetry: level now falling., Geophys. Res. Lett., 24, 1997, pp. 881-884. DOI: https://doi.org/10.1029/97GL00809
Clague, J. J., Luckman, B. H., Van Dorp, R. D., Gilbert, R., Froese, D., Jensen, B., Reyes, A. V., Rapid changes in the level of Kluane Lake in Yukon Territory over the last millennium., Quaternary Research, Vol. 66, No. 2, 2006, pp. 342-355. DOI: https://doi.org/10.1016/j.yqres.2006.06.005
Coe, M., Birkett, C., Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin., Water Resources Research, 40, 2003, pp. W10205. DOI: https://doi.org/10.1029/2003WR002543
Crétaux, J., Birkett C., Lake studies from satellite radar altimetry Altimétrie satellitaire sur les lacs., Comptes Rendus Geosciences, 338, 14-15, 2006, pp. 1098-1112. DOI: https://doi.org/10.1016/j.crte.2006.08.002
Cudlip, W., Ridley, J. K., Rapley, C. G., The use of satellite radar altimetry for monitoring wetlands., In: Remote Sensing and Global Change (Proc. 16th Annual Conf., Remote Sensing Society, London, UK, 1992, pp. 207-216.
De Oliveira Campos, I., Mercier, F., Maheu, C., Cochonneau, G., Kosuth, P., Blitzkow, D., Cazenave, A., Temporal variations of river basin waters from Topex/Poseidon satellite altimetry., Application to the Amazon basin, C.R. Acad. Sci., Paris, 333, 2001, pp. 633-643. DOI: https://doi.org/10.1016/S1251-8050(01)01688-3
Delmas, O., Altimétrie sur continents: étude des données TOPEX/POSEIDON sur le fleuve Congo., Reporte de stage de Segundo año, ENSAE, 2001, pp. 72.
Desai, S. D., Vincent, P., Statistical Evaluation of the Jason-1 Operational Sensor Data Record., Marine Geodesy, Vol. 26, No. 3-4, 2003, pp. 187-199. DOI: https://doi.org/10.1080/714044518
Francis, C. R. The height calibration of the ERS-1 radar altimeter., Proceedings of First ERS-1 Symposium on Space at the Service of Our Environment, 1, 1993, pp. 381-393.
Frappart, F. Hydrologie spatiale: Développement d’applications pour l’utilisation de la télédétection sur les grands bassins fluviaux., Tesis doctoral de la Univ. Toulouse III-Paul Sabatier, 2006, pp. 283.
Frappart, F., Calmant, S., Cauhope, M., Seyler, F., Cazenave, A., Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon Basin., Remote Sens. Environ, Vol. 100, No. 2, 2006, pp. 252–264. DOI: https://doi.org/10.1016/j.rse.2005.10.027
Gumbricht, T., McCarthy, T., The topography of the Okavango Delta, Botswana, and its tectonic and sedimentological implications., South African Journal of Geology, Vol. 104, No. 3, 2001, pp. 243-264. DOI: https://doi.org/10.2113/1040243
Hooijberg, M., Practical Geodesy., Using Computers, Springer, Berlin- Heidelberg, 1997. DOI: https://doi.org/10.1007/978-3-642-60584-0
Kerr, Y. H., Waldteufel, P., Wigneron, J.-P., Martinuzzi, J., Font, J., Berger, M., Soil moisture retrieval from space: The Soil Moisture and OceanSalinity (SMOS) mission., Geoscience and Remote Sensing, Vol. 39, No. 8, 2001, pp. 1729-1735. DOI: https://doi.org/10.1109/36.942551
Koblinsky, C. J., Clarke, R. T., Brenner, A. C., Frey, H., Measurement of river level variations with satellite altimetry., Water Resources Research, Vol. 29, No. 6, 1993, pp. 1839-1848. DOI: https://doi.org/10.1029/93WR00542
Kosuth, P., Cazenave A., Développement de l’altimétrie satellitaire radar pour le suivi hydrologique des plans d’eau continentaux: application au réseau hydrographique de l’Amazone., Reporte, Projet PNTS 00 / 0031/ INSU Reporte de actividades 2000- 2001, 2002, pp. 39.
Kouraev, A. V., Zakharovab, E., Samainc, O., Mognarda, N., Cazenave, A., Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002)., Remote Sensing of Environment, 93, 2004, pp. 238– 245. DOI: https://doi.org/10.1016/j.rse.2004.07.007
Legrésy, B., Télédétection des calottes polaires par altimétrie satellitaire: application à la climatologie et au bilan de masse de l’Antarctique., Tesis doctoral de la Univ. P. Sabatier, Toulouse 1998, pp. 148.
Leon, J. G., Bonnet, M. P., Cauhope, M., Calmant, S., Seyler, F., Distributed water flow estimates of the Upper Negro River using a Muskingum-Cunge routing model based on altimetric spatial data., En revisión. Hydrological Processes, 2007.
Leon, J. G., Calmant, S., Seyler, F., Bonnet, M. P., Cauhope, M., Frappart, F., Filizola, N., Rating curves and estimation of average water depth at the Upper Negro River based on satellite altimeter data and modelled discharges., J. of Hydrology, 328, 2006a, pp. 481-496. DOI: https://doi.org/10.1016/j.jhydrol.2005.12.006
Leon, J. G., Seyler, F., Calmant, S., Bonnet, M. P., Cauhope, M., Hydrological parameter estimation for ungauged basin based on satellite altimeter data and discharge modeling. A simulation for the Caquetá River (Amazonian Basin, Colombia)., Hydrology and Earth System Sciences, D. 3, 2006b, pp. 3023-3059. DOI: https://doi.org/10.5194/hessd-3-3023-2006
Maheu, C., Cazenave, A., Mechoso, C. R. Water level fluctuations in the Plata basin (South America) from Topex/Poseidon satellite altimetry., Geophys. Res., En revision, 2002. DOI: https://doi.org/10.1029/2002GL016033
Mercier, F., Altimétrie spatiale sur les eaux continentales: apport des missions Topex/Poseidon et ERS1&2 à l’étude des lacs, mers intérieures et bassins fluviaux.m Tesis doctoral de la Univ. Toulouse III-Paul Sabatier, 2001, pp. 190.
Mercier, F., Cazenave, A., Maheu C., Interannual lake level fluctuations (1993-1999) in Africa from Topex/Poseidon: connections with ocean-atmosphere interactions over the Indian ocean., Global and Planetary Changes, 32, 2002, pp.141-163. DOI: https://doi.org/10.1016/S0921-8181(01)00139-4
Morris, C. S., Gill, S. K., Variation of great lakes waters from Geosataltimetry., Water Resour. Res., 30, 1994a, pp. 1009- 1017. DOI: https://doi.org/10.1029/94WR00064
Morris, C. S., Gill, S. K., Evaluation of the Topex/Poseidon altimeter system over the Great Lakes., J. Geophys. Res., 99, C12, 1994b, pp. 24527-24539. DOI: https://doi.org/10.1029/94JC01642
Muller, E., Décamps, H., Dobson, M., Contribution of space remote sensing to river studies., Freshwater Biology, Vol. 29, No. 2, 1993, pp. 301–312. DOI: https://doi.org/10.1111/j.1365-2427.1993.tb00766.x
Ponce, V. M., Yevjevich, V., Muskingum Cunge method with variable parameters., J. Hydraul. Div, ASCE, 104 (HY12), 1978, pp. 1663-1667. DOI: https://doi.org/10.1061/JYCEAJ.0005119
Ponce, V.M. Simplified Muskingum routing equation., J Hydraul. Div, ASCE, 105 (HY1), 1979, pp. 85-91. DOI: https://doi.org/10.1061/JYCEAJ.0005147
Ponchaut, F., Cazenave, A., Continental lake level variations from Topex/Poseidon (1993-1996)., C. R. Acad. Sci. Paris, 326, 1998, pp. 13-20. DOI: https://doi.org/10.1016/S1251-8050(97)83198-9
Rantz, S. E., Measurement and computation of streamflow., Measurement of Stage and Discharge, US Geological Survey Water Supply Paper, Vol. 1, 1982, pp. 284.
Rémy, F., Legrésy, B., Bleuzen, P., Vincent, P., Minster, J. F., Dual frequency TOPEX altimeter observations of Greenland., J. Electromagnetic Waves and Applications, 10, 1996, pp. 1507- 1525. DOI: https://doi.org/10.1163/156939396X00892
Romero, F. La teledetección satelital y los sistemas de protección ambiental., Revista AquaTIC, 24, 2006, pp. 13–41.
Seyler, F., Calmant, S., Bonnet, M-P., Oliveira, M., Curvature of the hydraulic slope at the Negro-Solimões confluence from satellite altimetry and hydrodynamics: relationship with the distribution of erosion/sedimentation areas., EGS, Nice, April, 2004.
Seyler, F. Rapport de mission – Rio Negro (BR40), 04/2005., HYBAM Toulouse, 2005, pp. 12. Disponible en: http://www.mpl.ird.fr/hybam/campagnes/br_40.pdf.
Seyler, F., Bonnet, M. P., Calmant, S., Cauhopé, M., Cazenave A., Cochonneau, G., Divol, J., Do-Minh Kien, Frappart, F., Gennero, M.-C., Guyenne-Blin, K., Huynh, F., Leon, J. G., Mangeas, M., Mercier, F., Rocquelain G., Tocqueville, L., Zanifé, O. Z. The CASH Project. Proc. On 15 years of Progress in Radar Altimetry., Venice, Italy, ESA SP-614, July 2006, p. 4.
Smith, L. C., Satellite remote sensing of river inundation area, stage, and discharge: a review., Hydrological Processes, Vol. 11, No. 10, pp. 1998, pp. 1427–1439. DOI: https://doi.org/10.1002/(SICI)1099-1085(199708)11:10<1427::AID-HYP473>3.0.CO;2-S
Tapley, B. D., Chambers, D. P., Bettadpur, S., Ries, J. C., Large scale ocean circulation from the GRACE GGM01 Geoid., Geophysical Research Letters, Vo. 30, No. 22, 2163, doi:10.1029/2003, GL018622. DOI: https://doi.org/10.1029/2003GL018622
Tapley, B. D., Bettadpur S., Watkins, M. M., Reigber, C., The Gravity Recovery and Climate Experiment: Mission Overview and Early Results., Geophys. Res. Lett., 31, L09607, doi:10.1029/2004, GL019920. DOI: https://doi.org/10.1029/2004GL019920
Wingham, D., Francis, C., Baker, S. Bouzinac, C., Brockley, D., Cullen, R., Chateau-Thierry, P., Laxon, S., Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., Wallis, D., CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields., Advances in Space Research, Vol. 37, No. 4, 2006, pp. 841-871. DOI: https://doi.org/10.1016/j.asr.2005.07.027
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Juan León, Frederique Seyler, Astrid Puerta. (2011). Rating curve estimation using Envisat virtual stations on the main Orinoco river. Ingeniería e Investigación, 31(3), p.91. https://doi.org/10.15446/ing.investig.v31n3.26391.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2008 Juan Gabriel León Hernández, Efraín Antonio Domínguez Calle, Guillermo Duque Nivia
This work is licensed under a Creative Commons Attribution 4.0 International License.
The authors or holders of the copyright for each article hereby confer exclusive, limited and free authorization on the Universidad Nacional de Colombia's journal Ingeniería e Investigación concerning the aforementioned article which, once it has been evaluated and approved, will be submitted for publication, in line with the following items:
1. The version which has been corrected according to the evaluators' suggestions will be remitted and it will be made clear whether the aforementioned article is an unedited document regarding which the rights to be authorized are held and total responsibility will be assumed by the authors for the content of the work being submitted to Ingeniería e Investigación, the Universidad Nacional de Colombia and third-parties;
2. The authorization conferred on the journal will come into force from the date on which it is included in the respective volume and issue of Ingeniería e Investigación in the Open Journal Systems and on the journal's main page (https://revistas.unal.edu.co/index.php/ingeinv), as well as in different databases and indices in which the publication is indexed;
3. The authors authorize the Universidad Nacional de Colombia's journal Ingeniería e Investigación to publish the document in whatever required format (printed, digital, electronic or whatsoever known or yet to be discovered form) and authorize Ingeniería e Investigación to include the work in any indices and/or search engines deemed necessary for promoting its diffusion;
4. The authors accept that such authorization is given free of charge and they, therefore, waive any right to receive remuneration from the publication, distribution, public communication and any use whatsoever referred to in the terms of this authorization.