Published

2005-09-01

Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron

Deshidratación catalítica de etanol a etileno sobre HMOR y HZSM-5 modificada con hierro y cobre

DOI:

https://doi.org/10.15446/ing.investig.v25n3.14659

Keywords:

catalytic dehydration, ethanol, ethylene, HMOR, HZSM-5, Cu-ZSM-5, Fe-ZSM-5 (en)
deshidratación catalítica, etanol, etileno, HMOR, HZSM-5, Cu-ZSM-5, Fe-ZSM-5 (es)

Authors

  • José Luis Agudelo Universidad de Antioquia
  • Consuelo Montes de Correa Universidad de Antioquia

Catalytic dehydration of ethanol to ethylene on HMOR (Si/Al = 6.5), HZSM-5 (Si/Al = 29), Cu-HZSM-5 (Si/Al = 98) and Fe-HZSM-5 (Si/Al = 151) was studied at atmospheric pressure and 120°C - 300°C. ZSM-5 supported catalysts were active at temperatures over 260°C, achieving more than 60% conversion. Ethylene was predominantly produced as a dehydration product. Incorporating Cu did not significantly improve catalytic activity compared to HZSM-5. H-MOR was very active at low temperatures but deactivated rapidly at 240°C, most probably due to coke formation.

Se estudió la deshidratación catalítica de etanol a etileno en fase gaseosa sobre HMOR (Si/Al = 6.5), HZSM-5 (Si/Al = 29), Cu-HZSM-5 (Si/Al = 98) y Fe-HZSM-5 (Si/Al = 151); a presión atmosférica y en un intervalo de temperaturas entre 120-300°C. Los catalizadores soportados en HZSM-5 fueron activos a temperaturas por encima de 260°C, obteniéndose conversiones superiores al 60%. El etileno fue el producto predominante en la deshidratación. La presencia de cobre en la zeolita HZSM-5 incrementó levemente la actividad catalítica a alta temperatura, mientras que con la adición de hierro la conversión de etanol disminuyó. La zeolita HMOR fue activa a temperaturas menores de 200°C, pero se desactivó rápidamente a 240°C debido a la formación de coque.

References

Aguayo, A.T. et al., “Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modelling and acidity deterioration of the catalyst”, Ind. Eng. Chem. Res. Vol. 41, 2002, pp. 4216-4224. DOI: https://doi.org/10.1021/ie020068i

Bakoyannakis, D. et al., “The effect of preparation method on the catalytic activity of amorphous aluminas in ethanol dehydration”, J. of Chem. Technol. and Biotechnol, Vol. 76, 2001, pp. 1159-1164. DOI: https://doi.org/10.1002/jctb.487

Brandao, P. et al., “Dehydration of alcohols by microporous niobium silicate AM-11”, Catalysis Letters, Vol. 80, Nos. 3-4, 2002, pp. 99-102.

Bun, S. et al., “Ethanol conversion over ion-exchanged ZSM-5 zeolites”, Applied Catalysis, Vol. 59, 1990, pp. 13-29. DOI: https://doi.org/10.1016/S0166-9834(00)82184-3

Chang, C. D.; Lang, W.H., “Process for manufacturing olefins”, US patent 4,0,25,575, May. 24, 1997.

Chen, N.; y Reagan, W.J., “Hydrocarbon manufacturing from alcohol”, US patent 4,278,565, Jul. 24,1981.

Coutinho, PH.D.A. y cabral, J.A.R., “Process for obtaining gaseous streams rich in ethane”, US patent 4,251,677, Feb. 17, 1981.

Doheim, M. M.; el-shobaky, H.G., “Catalytic conversion of ethanol and iso-propanol over ZnO-treated Co3O4/Al2O3 solids”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 204, 2002a, pp. 169-174. DOI: https://doi.org/10.1016/S0927-7757(01)01128-1

Doheim, M.M.; Hanaty, S.A.; el-shobaky, G.A., “Catalytic conversion of ethanol and iso-propanol over Mn2O3/Al2O3 system doped with Na2O”, Materials letter, Vol. 55, 2002b, pp.304-311. DOI: https://doi.org/10.1016/S0167-577X(02)00383-X

El-katatny, E. A. et al., “Recovery of ethene-selective FeOx /Al2O3 ethanol dehydration catalyst from industrial chemical wastes”, Applied Catalysis A: General, Vol. 199, 2000, pp. 83-92. DOI: https://doi.org/10.1016/S0926-860X(99)00539-6

Golay, S. et al., “Influence of the catalyst acid/base properties on the catalytic ethanol dehydration under steady state and dynamic conditions. In situ surface and gas-phase analysis”, Chemical Engineering Science, Vol. 54, 19994, pp. 3593-3598. DOI: https://doi.org/10.1016/S0009-2509(98)00521-1

Golay, S.; Doepper, R.; Renken, A., “In-situ characterization of the surface intermediates for the ethanol dehydration reaction over g-alumina under dynamic conditions”, Applied Catalysis A: General, Vol. 172, 1998, pp. 97-106. DOI: https://doi.org/10.1016/S0926-860X(98)00109-4

Golay, S.; Doepper, R.; Renken, A., “Reactor performance enhancement under periodic operation for the ethanol dehydration over g-alumina, a reaction with a stop-effect”, Chemical Engineering Science, Vol. 54, 1999b, pp. 4469-4474. DOI: https://doi.org/10.1016/S0009-2509(99)00105-0

Haber, J. et al., “Potassium and silver salts of tungstophosphoric acid as catalysts in dehydration of ethanol and hydration of ethylene”, Journal of Catalysis, Vol. 207, 2002, pp. 296-306. DOI: https://doi.org/10.1006/jcat.2002.3514

Jacobs, J.; Jacobs, PA.; Uytterhoeven, J.B., “Process for obtaining ethylene from ethanol”, US patent 4,670,620, Jun. 2, 1987.

Kamiguchi, S.; Chihara, T., “Catalytic dehydration of alcohol to olefin and ether by halide cluster of Nb, Mo, Ta and W possessing an octahedral metal core”, Catalysis Letters, Vol. 85, Nos. 1-2, 2003, pp. 97-100.

Le Van Mao, R. et al., “Ethylene from ethanol over zeolite catalysts”, Applied Catalysis, Vol. 34, 1987a, pp. 163-179. DOI: https://doi.org/10.1016/S0166-9834(00)82453-7

Le Van Mao, R.; Dao, I. H., “Ethylene light olefins from ethanol”, US patent 4,698,452, Oct. 6, 1987.

Le Van Mao, R., “Catalytic conversion of aqueous ethanol to ethanol”, US patent 4,873,392, Oct. 10, 1989.

Le Van Mao, R.; Nguyen, T.H.; McLaughlin, G.P, “The Bioethanol-to-Ethylene (B.E.T.E.) process”, Applied Catalysis, Vol. 48, 1989, pp. 265-277. DOI: https://doi.org/10.1016/S0166-9834(00)82798-0

Le Van Mao, R.; Nguyen, T.M.; Yao, J., “Conversion of ethanol in aqueous solution over ZSM-5 zeolites. Influence of reaction parameters and catalyst acidity properties as studied by ammonia TPD technique”, Applied Catalysis, Vol. 61, 1990, pp. 161-173. DOI: https://doi.org/10.1016/S0166-9834(00)82141-7

Lin, H.; Ko, A., “Alcohol dehydration over ZSM-5 type zeolite, montmorillonite clays and pillared montmorillonite”, Journal of Chinese Chemical Society, Vol. 47, 2000, pp. 509-518. DOI: https://doi.org/10.1002/jccs.200000068

Mohamed, M.M., “Catalytic properties of Fe ion-exchanged mordenite toward the ethanol transformation: influence of the preparation”, Journal of Molecular Catalysis A: Chemical, Vol. 200, 2003, pp. 301-313. DOI: https://doi.org/10.1016/S1381-1169(03)00093-1

Nguyen, T.M.; Le Van Mao, R., “Conversion of Ethanol in Aqueous Solution over ZSM-5 Zeolites. Study of the Reaction Network”., Applied Catalysis, Vol. 58, 1990, pp 119-129. DOI: https://doi.org/10.1016/S0166-9834(00)82282-4

Oudejans, J. C.; Van Den Oosterkamp, PF. y VAN BEKKUM, H., “Conversion of Ethanol over H-ZSM-5 in the presence of water”, Applied Catalysis, Vol. 3, 1982, pp. 109-115. DOI: https://doi.org/10.1016/0166-9834(82)80084-5

Pargal, H.K.; Kanga, S.H., “Deterioration in the activity of activated alumina during the dehydration of ethanol to ethylene”, Chemical Age of India, Vol. 15, No. 1, 1964, pp. 117-123.

Pearson, D.E. “Process for catalytic dehydration of ethanol vapor to ethylene”, US patent 4,423,270, Dic. 27, 1983.

Phillips, C. B.; Datta, R., “Production of ethylene from hydrous ethanol on HZSM-5 under mild conditions”, Ind. Eng. Chem. Res. Vol. 36, 1997, pp. 4466-4475. DOI: https://doi.org/10.1021/ie9702542

Rodríguez Fuentes, G. et al., “Procedimiento para la obtención de un catalizador ácido de clinoptilolita o heulandita natural modificada”, patente cubana CU 22083 Al, Mar. 30, 1993.

Shinohara, Y. et al., “A computational chemical investigation of the dehydration and dehydrogenation of ethanol on oxide catalysts”, Journal of Chemical Software, Vol. 4, No.3, 1997. pp. 89. DOI: https://doi.org/10.2477/jchemsoft.4.89

Shinohara, Y. et al., “Study of the interaction of ethanol with the Bronsted and Lewis acid sites on metal oxide surfaces using the DV-Xa method”, Journal of Chemical Software, Vol. 4, No. 41, 1997, pp. 1-12. DOI: https://doi.org/10.2477/jchemsoft.4.41

Tsao, U.; Reilly, J. W., “Dehydrate ethanol to ethylene”, Hydrocarbon Processing, Feb., 1978, pp. 133-136.

Tsao, U.; Zasloff, H.B., “Production of ethylene from ethanol”, US patent 4,134,926, Ene. 16, 1979.

Valladares Barrocas, H.; De Castro, J.B. y Coutinho, R., “Process for preparing ethane”, US patent 4,232,179, Nov. 4, 1980.

Villa, A.L.; Caro, C.A.; Montes, C., “Cu- and Fe-ZSM-5 as catalysts for phenol hydroxylation”, Journal of Molecular Catalysis A: Chemical, Vol. 228, 2005, pp. 233-240. DOI: https://doi.org/10.1016/j.molcata.2004.09.035

Winnick, C. N., “Catalytic process for dehydration of alcohols”, US patent 4,207,424, Jun. 10, 1980.

Winter, O.; Eng, M., “Make ethylene from ethanol”, Hydrocarbon Processing, Nov., 1976, pp. 125-133.

Zaki, T., “Catalytic dehydration of ethanol using transition metal oxide catalysts”, Journal of colloid and Interface Science, Vol. 284, 2005, pp. 606-613. DOI: https://doi.org/10.1016/j.jcis.2004.10.048

How to Cite

APA

Agudelo, J. L. and Montes de Correa, C. (2005). Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron. Ingeniería e Investigación, 25(3), 22–26. https://doi.org/10.15446/ing.investig.v25n3.14659

ACM

[1]
Agudelo, J.L. and Montes de Correa, C. 2005. Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron. Ingeniería e Investigación. 25, 3 (Sep. 2005), 22–26. DOI:https://doi.org/10.15446/ing.investig.v25n3.14659.

ACS

(1)
Agudelo, J. L.; Montes de Correa, C. Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron. Ing. Inv. 2005, 25, 22-26.

ABNT

AGUDELO, J. L.; MONTES DE CORREA, C. Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron. Ingeniería e Investigación, [S. l.], v. 25, n. 3, p. 22–26, 2005. DOI: 10.15446/ing.investig.v25n3.14659. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14659. Acesso em: 11 jan. 2025.

Chicago

Agudelo, José Luis, and Consuelo Montes de Correa. 2005. “Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron”. Ingeniería E Investigación 25 (3):22-26. https://doi.org/10.15446/ing.investig.v25n3.14659.

Harvard

Agudelo, J. L. and Montes de Correa, C. (2005) “Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron”, Ingeniería e Investigación, 25(3), pp. 22–26. doi: 10.15446/ing.investig.v25n3.14659.

IEEE

[1]
J. L. Agudelo and C. Montes de Correa, “Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron”, Ing. Inv., vol. 25, no. 3, pp. 22–26, Sep. 2005.

MLA

Agudelo, J. L., and C. Montes de Correa. “Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron”. Ingeniería e Investigación, vol. 25, no. 3, Sept. 2005, pp. 22-26, doi:10.15446/ing.investig.v25n3.14659.

Turabian

Agudelo, José Luis, and Consuelo Montes de Correa. “Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron”. Ingeniería e Investigación 25, no. 3 (September 1, 2005): 22–26. Accessed January 11, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14659.

Vancouver

1.
Agudelo JL, Montes de Correa C. Catalytic dehydration of ethanol to ethylene over HMOR HZSM-5 modified with copper and iron. Ing. Inv. [Internet]. 2005 Sep. 1 [cited 2025 Jan. 11];25(3):22-6. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14659

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Mauricio López Gómez, John Posada, Vladimir Silva, Lina Martínez, Alejandro Mayorga, Oscar Álvarez. (2023). Diagnosis of Challenges and Uncertainties for Implementation of Sustainable Aviation Fuel (SAF) in Colombia, and Recommendations to Move Forward. Energies, 16(15), p.5667. https://doi.org/10.3390/en16155667.

Dimensions

PlumX

Article abstract page views

474

Downloads

Download data is not yet available.

Most read articles by the same author(s)