Published

2008-05-01

Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts

Efecto del agente oxidante y la quiralidad del catalizador en la epoxidación de R-(+)-limoneno con catalizadores tipo Jacobsen

DOI:

https://doi.org/10.15446/ing.investig.v28n2.14890

Keywords:

diastereoselectivity, epoxidation, R-( )-Limonene, oxidising agent type, asymmetric induction, chiral, achiral (en)
diastereoselectividad, epoxidación, R-( )-Limoneno, agente oxidante, inducción asimétrica, catalizador quiral, catalizador aquiral (es)

Authors

  • Juliana Reyes Calle Universidad de Antioquia
  • Jairo Antonio Cubillos Lobo niversidad de Antioquia
  • Consuelo Montes de Correa Universidad de Antioquia
  • Aída Luz Villa Holguín de P. Universidad de Antioquia

The oxidising agent effect on R-(+)-Limonene epoxide diastereoselectivity using chiral and achiral Jacobsen’s type catalysts is presented. The type of oxidising agent strongly influences diastereoselectivity. Moderate diastereomeric excesses were achieved in the presence of oxidising agents prepared in situ but in the absence of catalyst (23% for DMD and 29% for O2/pivalaldehyde). Similar diastereomeric excesses were obtained with both chiral and achiral catalyst when the oxidising agents were prepared in situ; 56% and 50% excesses were obtained when using DMD for the chiral and achiral catalyst (respectively) and 38% using O2/pivalaldehyde for both catalysts. Diastereomeric excesses were not observed in the absence of catalyst when using commercial oxidising agents; the chiral catalyst presented larger diastereomeric excesses than its achiral counterpart: 65% and 38% excess using NaOCl for the chiral and achiral catalyst, respectively, and 79% and 39% using m-CPBA for the chiral and achiral catalyst, respectively. This suggests that at least one oxidant species, different from the conventionally accepted (MnV(oxo)), might be involved in this catalytic process. A modification of the traditional catalytic cycle is proposed considering the type of oxidising agent. The catalyst’s chiral centre appears to govern asymmetric induction when commercial oxidising agents are used, whereas the R-(+)-Limonene chiral centre appears to govern asymmetric induction in the presence of  

in situ-prepared oxidising agents. On the other hand, the chemical stability of Jacobsen’s catalyst improved when in situ produced DMD was used as oxidising agent.

Se presenta el efecto del agente oxidante en la diastereoselectividad del epóxido de R-(+)-limoneno utilizando catalizadores tipo Jacobsen, tanto en su forma quiral como aquiral. Se encontró que el tipo de agente oxidante afecta marcadamente la diastereoselectividad. Así, en presencia de agentes oxidantes preparados in situ se obtuvieron excesos diastereoméricos moderados y similares en ausencia de catalizador (23% con DMD y 29% con O2/ pivalaldehído). También se observó este comportamiento en presencia de ambos catalizadores. Con DMD se obtuvo 56% con el catalizador quiral y 50% con el aquiral, y con O2/pivalaldehído se obtuvo 38% con ambos catalizadores. Por otro lado, con los agentes oxidantes comerciales no se presentó exceso diastereomérico en ausencia de catalizador. En este caso, el catalizador quiral alcanzó un exceso diastereomérico mayor que el aquiral. Con NaOCl se logró 65% con el catalizador quiral y 38% con el aquiral, y con m-CPBA 79% con el catalizador quiral y 39% con el aquiral. Lo anterior sugiere que debe existir al menos otra especie oxidante intermediaria diferente a la aceptada convencionalmente (MnV(oxo)). De esta manera, se propone una modificación al ciclo catalítico tradicional teniendo en cuenta el agente oxidante. En presencia de los agentes oxidantes comerciales se presume que el centro quiral del catalizador gobierna la inducción asimétrica, mientras que para los agentes oxidantes preparados in situ la inducción asimétrica estaría gobernada por el centro quiral del R- (+)-limoneno. Adicionalmente se encontró que la estabilidad química del catalizador de Jacobsen mejoró cuando el agente oxidante fue DMD generado in situ.

References

Abashkin, Y. G., Collins, J. R., Burt, S. K., (Salen)Mn(III)-Catalyzed Epoxidation Reaction as a Multi-Channel Process with Different Spin States., Electronic Tuning of Asymmetric Catalysis: A Theoretical Study., Inorganic Chemistry, Vol. 40, 2001, pp. 4040-4048. DOI: https://doi.org/10.1021/ic0012221

Adam, W., Roschmann, K. J., Saha-Möller, C. R., Seebach, D., Cis-Stilbene and (1α,2β,3α) -(2-Ethenyl-3-methoxycy-clopropyl) benzene as mechanistic probes in the MnIII(salen)-catalyzed epoxidation: Influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer., Journal of American Chemical Society, Vol. 124, No. 18, 2002, pp. 5068-5073. DOI: https://doi.org/10.1021/ja0177206

Bhattacharjee, S., Anderson, J. A., Epoxidation by layered double hydroxide-hosted catalysts. Catalyst synthesis and use in the epoxidation of R-(+)-Limonene and (—)-α-Pinene using molecular oxygen., Catalysis Letters, Vol. 95, No. 3-4, Jun., 2004, pp. 119-125. DOI: https://doi.org/10.1023/B:CATL.0000027284.86112.5a

Bryliakov, K. P., Babushkin, D. E., Talsi, E. P., H NMR and EPR spectroscopic monitoring of the reactive intermediates of (salen)MnIII catalyzed olefin epoxidation., Journal of Molecular Catalysis. A: Chemical, Vol. 158, No. 1, Sept., 2000, pp. 19-35. DOI: https://doi.org/10.1016/S1381-1169(00)00040-6

Bryliakov, K. P., Khavrutskii, I. V., Talsi, E. P., Kholdeeva, O. A., EPR detection and characterization of high-valent manganese complexes in MnIII(salen) catalyzed aerobic olefin epoxidation., Reaction Kinetics and Catalysis Letters, Vol. 71, No. 1, Sept., 2000, pp. 183-191. DOI: https://doi.org/10.1023/A:1010323308321

Cubillos, J. A., Heterogeneous asymmetric epoxidation of cis-ethyl cinnamate over Jacobsen’s catalyst immobilized in inorganic porous materials., tesis presentada a la Universidad RWTH-Aachen, Aachen-Alemania, para optar al grado de Doctor en Ciencias Naturales., 2005.

Dalton, C. T., Ryan, K. M., Wall, V. M., Bousquet, C., Gilheany, D. G., Recent progress towards the

understanding of metal-salen catalysed asymmetric alkene epoxidation., Topics in Catalysis, Vol. 5, No. 1-4, Abril, 1998, pp. 75-91.

Finney, N. S., Pospisil, P. J., Chang, S., Palucki, M., Konsler, R. G., Hansen, K. B., Jacobsen, E. N., On the viability of oxametallacyclic intermediates in the (salen) Mn catalyzed asymmetric epoxidation., Angewandte Chemie International Edition in English, Vol. 36, No. 16, Sept., 1997, pp. 1720-1723. DOI: https://doi.org/10.1002/anie.199717201

Frunza, L., Kosslick, H., Landmesser, H., Höft, E., Fricke, R., Host/guest interactions in nanoporous materials I. The embedding of chiral salen manganese(III) complex into mesoporous silicates., Journal of Molecular Catalysis. A: Chemical, Vol. 123, No. 2-3, Agosto, 1997, pp. 179- 187. DOI: https://doi.org/10.1016/S1381-1169(97)00046-0

Ito, Y. N., Katsuki, T., Asymmetric catalysis of new generation chiral metallosalen complexes., Bulletin of the Chemical Society of Japan, Vol. 72, N° 4, 1999, pp. 603- 619. DOI: https://doi.org/10.1246/bcsj.72.603

Jacobsen, E. N., Catalytic Asymmetric Synthesis; I. Ojima, (ed.); New York, VCH, 1993, capítulo 4.2.

Johnson, R. A., Sharpless, K. B., Catalytic Asymmetric Synthesis; I. Ojima, (ed.), New York, VCH, 1993, capítulo 4.1.

Karandikar, P., Dhanya, K., Deshpande, S., Chandwadkar, A., Sivasanker, S., Agashe, M., Cu/Co-salen immobilized MCM-41: characterization and catalytic reactions., Catalysis Communications. Vol. 5, No.2, Feb., 2004, pp. 69- 74. DOI: https://doi.org/10.1016/j.catcom.2003.11.015

Katsuki, T., Catalytic asymmetric oxidations., Coordination Chemistry Reviews, Vol. 140, Marzo, 1995, pp. 189-214. DOI: https://doi.org/10.1016/0010-8545(94)01124-T

Katsuki, T., Mn-salen catalyst, competitor of enzymes, for asymmetric epoxidation., Journal of Molecular Catalysis. A: Chemical, Vol. 113, No. 1-2, Nov., 1996, pp. 87- 107. DOI: https://doi.org/10.1016/S1381-1169(96)00106-9

Larrow, J. F., Jacobsen, E. N., A practical method for the large-scale preparation of [N,N’-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminato(2-)]manganese(III) chloride, a highly enantioselective epoxidation catalyst., Journal of Organic Chemistry, Vol. 59, No 7, 1994, pp. 1939-1942. DOI: https://doi.org/10.1021/jo00086a062

Lin, G. Q., Li, Y. M., Chan. A. S. C., Principles and Applications of Asymmetric Synthesis., New York, Wiley/ Interscience, 2001.

Linde, C., Akermark, B., Norrby, P., Svensson, M., Timing is critical: Effect of spin changes on the diastereoselectivity in Mn(salen)-catalyzed epoxidation., Journal of American Chemical Society, Vol. 121, No. 21, 1999, pp. 5083- 5084. DOI: https://doi.org/10.1021/ja9809915

Linker, T., The Jacobsen-Katsuki epoxidation and its controversial mechanism., Angewandte Chemie International Edition in English. Vol. 36, No. 19, Oct., 1997, pp. 2060- 2062. DOI: https://doi.org/10.1002/anie.199720601

Palucki, M., Finney, N. S., Pospisil, P. J., Güler, M. L., Ishida, T., Jacobsen, E. N., The mechanistic basis for electronic effects on enantioselectivity in the (salen)Mn(III)-catalyzed epoxidation reaction., Journal of American Chemical Society, Vol. 120, No. 5, 1998, pp. 948-954. DOI: https://doi.org/10.1021/ja973468j

Saikia, L., Srinivas, D., y Ratnasamy, P., Chemo-, regio- and stereo-selective aerial oxidation of limonene to the endo 1,2-epoxide over Mn(Salen)-sulfonated SBA-15., Applied Catalysis. A: General, Vol. 309, No. 1, Jul., 2006, pp. 144-154. DOI: https://doi.org/10.1016/j.apcata.2006.05.011

Schuster, C., Hölderich, W., Modification of faujasites to generate novel host for “ship-in-a-bottle” complexes., Catalysis Today. Vol. 60, No. 3-4, Jul., 2000, pp. 193- 207. DOI: https://doi.org/10.1016/S0920-5861(00)00336-9

Sheldon, R. A., Chirotechnology, Marcel Dekker, Inc. (ed.), New York, 1993.

Wang, D., Wang, M., Zhang, R., Wang, X., Gao, A., Ma, J., Sun, L., Asymmetric epoxidation of styrene and chromenes catalysed by dimeric chiral (pyrrolidine salen)Mn(III) complexes., Applied Catalysis. A: General. Vol. 315, Nov., 2006, pp. 120-127. DOI: https://doi.org/10.1016/j.apcata.2006.09.011

Zhang, W., Jacobsen, E.N., Asymmetric olefin epoxidation with sodium hypochlorite catalyzed by easily prepared chiral Mn(III) salen complexes., Journal of Organic Chemistry. Vol. 56, N° 7, 1991, pp. 2296-2298. DOI: https://doi.org/10.1021/jo00007a012

How to Cite

APA

Reyes Calle, J., Cubillos Lobo, J. A., Montes de Correa, C. and Villa Holguín de P., A. L. (2008). Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts. Ingeniería e Investigación, 28(2), 37–44. https://doi.org/10.15446/ing.investig.v28n2.14890

ACM

[1]
Reyes Calle, J., Cubillos Lobo, J.A., Montes de Correa, C. and Villa Holguín de P., A.L. 2008. Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts. Ingeniería e Investigación. 28, 2 (May 2008), 37–44. DOI:https://doi.org/10.15446/ing.investig.v28n2.14890.

ACS

(1)
Reyes Calle, J.; Cubillos Lobo, J. A.; Montes de Correa, C.; Villa Holguín de P., A. L. Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts. Ing. Inv. 2008, 28, 37-44.

ABNT

REYES CALLE, J.; CUBILLOS LOBO, J. A.; MONTES DE CORREA, C.; VILLA HOLGUÍN DE P., A. L. Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts. Ingeniería e Investigación, [S. l.], v. 28, n. 2, p. 37–44, 2008. DOI: 10.15446/ing.investig.v28n2.14890. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14890. Acesso em: 11 jan. 2025.

Chicago

Reyes Calle, Juliana, Jairo Antonio Cubillos Lobo, Consuelo Montes de Correa, and Aída Luz Villa Holguín de P. 2008. “Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts”. Ingeniería E Investigación 28 (2):37-44. https://doi.org/10.15446/ing.investig.v28n2.14890.

Harvard

Reyes Calle, J., Cubillos Lobo, J. A., Montes de Correa, C. and Villa Holguín de P., A. L. (2008) “Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts”, Ingeniería e Investigación, 28(2), pp. 37–44. doi: 10.15446/ing.investig.v28n2.14890.

IEEE

[1]
J. Reyes Calle, J. A. Cubillos Lobo, C. Montes de Correa, and A. L. Villa Holguín de P., “Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts”, Ing. Inv., vol. 28, no. 2, pp. 37–44, May 2008.

MLA

Reyes Calle, J., J. A. Cubillos Lobo, C. Montes de Correa, and A. L. Villa Holguín de P. “Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts”. Ingeniería e Investigación, vol. 28, no. 2, May 2008, pp. 37-44, doi:10.15446/ing.investig.v28n2.14890.

Turabian

Reyes Calle, Juliana, Jairo Antonio Cubillos Lobo, Consuelo Montes de Correa, and Aída Luz Villa Holguín de P. “Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts”. Ingeniería e Investigación 28, no. 2 (May 1, 2008): 37–44. Accessed January 11, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14890.

Vancouver

1.
Reyes Calle J, Cubillos Lobo JA, Montes de Correa C, Villa Holguín de P. AL. Oxidising agent and catalyst chirality effect on epoxidation of R-(+)- Limonene using Jacobsen-type catalysts. Ing. Inv. [Internet]. 2008 May 1 [cited 2025 Jan. 11];28(2):37-44. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14890

Download Citation

CrossRef Cited-by

CrossRef citations3

1. Alan J. McCue, Richard P. K. Wells, James A. Anderson. (2011). Confirmation of Chirality in Homogeneous and Heterogeneous Salen‐Based Catalysts. ChemCatChem, 3(4), p.699. https://doi.org/10.1002/cctc.201000387.

2. Omar Portilla-Zuñiga, Marco Fidel Mosquera-Ramírez, Jaime Martín-Franco, Olga Lucía Oyos-Saavedra, Germán Cuervo-Ochoa. (2017). Epoxidation of Neral/Geranial Using a Jacobsen-Katsuki Mn catalyst by Chemical and Electrochemical Methods. Journal of the Mexican Chemical Society, 60(1) https://doi.org/10.29356/jmcs.v60i1.64.

3. Jairo Antonio Cubillos, Juan Alejandro Rubio, Julie Joseane Murcia, Juan‐Carlos Castillo, Jaime Portilla, Hugo Alfonso Rojas. (2024). Diastereoselective synthesis of cis‐1,2‐limonene oxide using dimeric Salen‐Mn (III) complexes as reusable catalysts. Applied Organometallic Chemistry, 38(3) https://doi.org/10.1002/aoc.7382.

Dimensions

PlumX

Article abstract page views

462

Downloads

Download data is not yet available.