Published

2008-09-01

Cement plant gaseous pollutant emission reduction technologies

Tecnologías para la reducción de emisiones de gases contaminantes en plantas cementeras

DOI:

https://doi.org/10.15446/ing.investig.v28n3.15118

Keywords:

cement kiln, greenhouse effect, pollution control, NOX, SO2, CO2 (en)
hornos cementeros, efecto invernadero, control de contaminantes, NOX, SO2, CO2 (es)

Authors

  • Andrés Emilio Hoyos Barreto Universidad de Antioquia
  • Mónica María Jiménez Correa .
  • Alejandro Ortíz Muñoz Cementos Argos S.A.
  • Consuelo Montes de Correa Universidad de Antioquia

A brief description of SOX, NOX and CO2 formation is presented, these being the main pollutants emitted in the

cement industry gas stream Several technologies for reducing NOX, SOX and CO2 emissions in long wet kilns are introduced: primary measures preventing contaminant formation and secondary/tube end emission reduction measures. Strategies for preventing CO2 (greenhouse effect gas) formation are also addressed, such as fuel and raw material substitution and CO2 capture technologies which are still being developed.

En este artículo se hace una breve descripción de los procesos de formación de SOX, NOX y CO2, los principales contaminantes emitidos en las descargas gaseosas de la industria del cemento. Se presentan, además, varias tecnologías para reducir dichas emisiones en hornos cementeros húmedos. Estas medidas están diferenciadas en primarias, que permiten disminuir la formación de los contaminantes, y las medidas secundarias o de fin de tubo. Para el caso del CO2, se exponen las estrategias para evitar la formación de este gas de efecto invernadero, orientadas hacia la sustitución de combustibles y materias primas, así como las tecnologías en desarrollo para la captura de CO2.

References

ADEME y MEDD., The French Cement Industry Guide to NOX Emissions Reduction Measures, French Agency for Environment and Energy Management., December, 2002, pp. 10-11.

Alix, F. R., Duncan, J. L., McLarnon, Ch. R., Removing NOX, SO2 and Hg from a Gas Stream Using Limestone Regeneration., U.S. Patent No. 7,048,899, May, 2006.

Álvarez, E., La eliminación de SO2 en gases de combustión, Catalizadores y adsorbentes para protección ambiental en la región iberoamericana, Madrid España, CYTED, Agosto, 1998, pp. 79–84.

Berkenpas, M. B., Frey, H. C., Fry, J. J, Kalagnanam, J., Rubin, E. S., Integrated Environmental Control Model: Technical Documentation., Pittsburgh, Carnegie Mellon University. Mach 1999.

BGS., Cement Raw Materials., Office of the Deputy Prime Minister., March 2004.

Biede, O., J. Knudesn., Carbon Dioxide Capture and Storage Activities in Denmark., 9th International CO2 Capture Network, Copenhagen, 2006.

Bolwerk, R., Ebertsch, G., Heinrich, M., Plickert, S., Oerter, M., German Contribution to the Review of the Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries Part II., Germany, June 2006.

Brouwer, J. P., Feron, P. H. M., Asbroek, N. A. M., CO2 Absorption Using Precipitating Amino Acids in Spray Tower. 9th International CO2 Capture Network Meeting, Copenhagen, Denmark, 2006.

CEMBUREAU., Best Available Techniques for the Cement Industry., Brussels, 1999.

CEMBUREAU., Climate Change, Cement and the EU., Brussels, 1998.

CNPMLYTA., Casos de Aplicación de Producción Más Limpia en Colombia., Editorial clave, edición # 1, Diciembre, 2002.

Cooper, C. D., Clausen, C. A., Collins, M. M., Method for Removal of Nitrogen Oxides from

Stationary Combustion Source., U.S. Patent No. 6,676,912, January, 2004.

Cullinane, J. T., Rochelle G. T., Carbon dioxide absorption with aqueous potassium carbonate promoted by piperazine., Chemical Engineering Science 59, 2004, pp. 3619-3630. DOI: https://doi.org/10.1016/j.ces.2004.03.029

Dang, H. Y., Rochelle, G. T., CO2 absorption rate and solubility in monoethanolamine / piperazine / water., Separation Science and Technology, 38, 2003. pp. 337-357. DOI: https://doi.org/10.1081/SS-120016678

Davison, J., Freund, P., Smith, A., Putting Carbon Back into the Ground., IEA Greenhouse Gas R&D Programme., February, 2001.

De Nevers, N., Ingeniería de Control de la Contaminación del Aire., DF México, McGraw-Hill Inc., 1998.

Diao, Y.-F., Zheng, X.-Y., He, Bo-Shu., Chen, Ch.-He., Xu, Xu-Ch., Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing., Energy Conversion and Management 45, August 2004, pp. 2283-2296. DOI: https://doi.org/10.1016/j.enconman.2003.10.011

DOE., Carbon Capture Research. 2007, Consultado Jun. 21, 2008, En: http://www.fossil.energy.gov/programs/sequestration/capture/.

DOE., Cement Kiln Flue Gas Recovery Scrubber Project., U.S. Department of Energy, National Energy Technology Laboratory. Washington DC., 2001.

DOE., Cement Kiln Flue Gas Recovery Scrubber, Comprehensive Report to Congress Clean Coal Technology Program., U.S. Department of Energy, Washington, DC., 1989.

DOE., Innovative Clean Coal Technology, Demonstration Project., U.S. Department of Energy., Washington, DC., 1989.

Dragos, L., Nada, O., Flueraru, C., Scarlat N., Romanian researches for CO2 recovery., Energy Conversion and Management 37, 1996, pp. 923-928. DOI: https://doi.org/10.1016/0196-8904(95)00278-2

Duncan, J. L., McLarnon, C. R., Alix, F. R., NOx, Hg and SO2 Removal Using Alkali Hydroxide. U.S. Patent 7,052,662, May 30, 2006.

Duncan, J. L., McLarnon, C. R., Alix, F. R., NOx, Hg and SO2 Using Ammonia. U.S. Patent No. 6,936,231, August 30, 2005.

ERG Inc., Assessment of NOX Emissions Reduction Strategies for Cement Kilns - Ellis County., Cincinnati, Ohio., July 14, 2006.

Fisher, K. S., Beitler, C., Rueter, C., Searcy, K., Rochelle, G., Jassim, M., Integrating Mea Regeneration with CO2 Compression and Peaking to Reduce CO2 Capture Costs., The University of Texas at Austin., Austin, Texas 2005.

Florida Rock Industries., Report in Support of an Application for a PSD Construction Permit Review., Thompson S. Baker Cement Plant., Alachua County, Florida, 2004.

Gartner, E., Industrially interesting approaches to "low-CO2" cements., Cement and Concrete Research 34, 2004., pp. 1489- 1498. DOI: https://doi.org/10.1016/j.cemconres.2004.01.021

Goff, G. S., Rochelle, G. T., Oxidative degradation of monoethanolamine in CO2 capture: O2 Mass transfer., Greenhouse Gas Control Technologies 7, 2005, pp. 1831-1834 DOI: https://doi.org/10.1016/B978-008044704-9/50221-4

Greer, W. L., Interactions Among Gaseous Pollutants from Cement Manufacture and their Control Technologies., Portland Cement Association, Illinois, 2003.

Greer, W. L., SOX / NOX Control Compliance with Environmental Regulations., Lone Star Industries, Inc., Houston, Texas, 1988.

Gutiérrez, R. M., Bernal, S., Rodríguez, E., Nuevos Concretos para el Aprovechamiento de un Sub-Producto Industrial., Congreso Iberoamericano de Metalurgia y Materiales, Habana, Cuba, Octubre 8, 2006.

Hagström, P., BAT Process Selection and Split Views., European Conference on The Sevilla Process: A Driver for Environmental Performance in Industry., Stuttgart, April 6, 2000.

ICPC., Estadisticas., Acceso, Junio 20 de 2008., En: http://www.icpc.org.co/contenido/capitulo.asp?chapter=206.

IPPC., Reference Document on Best Available Techniques in the Cement and Lime Manufacturing Industries., Seville – Spain, December, 2001

Jorgensen T. L., Livbjerg H., Glarborg P., Homogeneous and heterogeneously catalyzed oxidation of SO2., Chemical Engineering Science 62, 2007, pp. 4496–4499. DOI: https://doi.org/10.1016/j.ces.2007.05.016

Katoh, M., Yoshikawa, T., Tomonari, T., Katayama, K., Tomida, T., Adsorption Characteristics of Ion-Exchanged ZSM-5 Zeolites for CO2 / N2 Mixtures., Journal of Colloid and Interface Science, 226, 2000, pp. 145-150. DOI: https://doi.org/10.1006/jcis.2000.6795

Keskes, E., Adjiman, C. S., Galindo, A., Jackson, G., A Physical Absorption Process for the Capture of CO2 from CO2-Rich Natural Gas Streams., Chemical Engineering Department, Imperial College London., London SW7 2AZ, United Kingdom, Nov. 15, 2006.

Kohl, A. L., Nielsen, R. B., Gas Purification., Gulf Publishing Company, Houston, 1997.

Lee, J. W., Li, R., Integration of Fossil Energy Systems with CO2 Sequestration Through NH4HCO3 Production., Energy Conversion and Management 44, 2003, pp. 1535-1546. DOI: https://doi.org/10.1016/S0196-8904(02)00149-8

Lee, J. W., Li, R., Method for Reducing CO2, CO, NOX, and SOX Emissions, US Patent No. 6,447,437, September 10, 2002.

Lin, M. L., Knenlein, M. J., Cement Kiln NOX Reduction Experience Using the NOxOUT® Process., 2000 International Joint Power Generation Conference., Miami Beach, Florida, July 23, 2000.

Liu, H., Okazaki, K., Simultaneous Easy CO2 Recovery and Drastic Reduction of SOX and NOX in O2/CO2 Coal Combustion with Heat Recirculation. Fuel 82, 2003, pp. 1427-1436. DOI: https://doi.org/10.1016/S0016-2361(03)00067-X

Manias, C. G., Kiln Burning Systems. An Overview., Cement Americas, March-April, 2005.

Marlowe, I., Emission factors programme Task 4(b) – Review of cement sector Pollution Inventory., Abingdon, Oxon, August, 2003.

MAVDT, Resolución 909., Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Junio 5, 2008.

McQueen, A. T., Bortz, S. J., Hatch, M.S., Buening, H. J., Shore, D. E., Leonard, R. L., Bouse, E. F., Cement Kiln NOX Control., 35th IEEE Cement Industry Technical Conference, Toronto, Canada, May 23-27, 1993.

Meng, L. Y., Burris, S., Bui, H., Pan, W. P., Development of an Analytical Method for Distinguishing Ammonium Bicarbonate from the Products of an Aqueous Ammonia CO2 Scrubber., Analytical Chemistry 77, 2005, pp. 5947-5952. DOI: https://doi.org/10.1021/ac050422x

Mok, Y. S., Lee, H. J., Removal of Sulfur Dioxide and Nitrogen Oxides by Using Ozone Injection and Absorption-Reduction Technique., Fuel Processing Technology 87, 2006, pp. 591-597. DOI: https://doi.org/10.1016/j.fuproc.2005.10.007

Morrison, G. L., Method for Simultaneously Scrubbing Cement Kiln Exhaust Gas and Producing Useful By-Products Therefrom., U.S. Patent No. 4,716,027, December 29, 1987.

Ondrey, G., An Ammonia-Based CO2-Capture Process Moves Several Steps Closer to Commercialization., Chemical Engineering., April, 2008, pp. 13-16.

Paun C., Boghosian S., Parvulescu V., Massiot Ph., Centeno M. A., Grange P., Pˆarvulescu V. I., New vanadia-mesoporous catalysts for the oxidation of SO2 in diluted gases., Catalysis Today 91–92, 2004, pp. 33–37. DOI: https://doi.org/10.1016/j.cattod.2004.03.026

RITE., Novel Absorbents for CO2 Capture from Gas Stream., 9th international CO2 Capture Network., Copenhagen, Denmark, June 16, 2006.

Sanders D., Battye R., Walsh S., Lee-Greco J., NOX Control Technologies for the Cement Industry, U.S. EPA, September 19, 2000.

Schreiber, R. J., Russell, C. O., The Experience of SCR at Solnhofen and Its Applicability to US Cement Plants., Portland Cement Association, June 6, 2006.

Shen, Ch. H., Rochelle, G. T., Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite., Environ. Sci. Technol., 32, 1998, pp. 1994-2003. DOI: https://doi.org/10.1021/es970466q

Sobolewski, H., Hartenstein, H., Martin, M., Experience Steag’s Long-Term Catalyst Operating Experience and Cost., 2006 Environmental Controls Conference, Pittsburgh, Pennsylvania, May 16, 2006.

Somary, G., Viet, E., Controlling Emissions in Cement Manufacturing., Cement Americas., May–June, 1999.

Suchak, N. J., Nadkarni, S. K., Kelton, R. E., Koltick, J. M., Process for the Removal of Contaminants from Gas Stream. U.S. Patent No. 7,303,735, December 4, 2007.

Takamura, Y., Narita, S., Aoki, J., Hironaka, S., Uchida, S., Evaluation of Dual-Bed Pressure Swing Adsorption for CO2 Recovery from Boiler Exhaust Gas., Separation and Purification Technology, 24, 2001, pp. 519-528. DOI: https://doi.org/10.1016/S1383-5866(01)00151-4

U.S. EPA., Air Pollution Control Technology Fact Sheet, US Environmental Protection Agency., Consultado: Julio 16, 2008., En: http://usasearch.gov/search?input-form=simple-firstgov&query=site%3Aepa.gov+EPA-452%2FF-03- 034&x=38&y=15.

U.S. EPA., Emission Factor Documentation for AP-42, Portland Cement Manufacturing, final Report., Office of Air Quality Planning and Standards Emission Inventory Branch, Environmental Protection Agency, May 18, 1994.

U.S. EPA., Nitrogen Oxides (NOX), Why and How They Are Controlled., North Carolina, November, 1999.

UNEP., Voluntary Environmental Initiatives for Sustainable Industrial Development Concepts and Applications., Manama – Bahrain, 2003.

Yeh, A. C., Bai, H., Comparison of Ammonia and Monoethanolamine Solvents to Reduce CO2 Greenhouse Gas Emissions., The Science of the Total Environment 228, 1999, pp. 121-133. DOI: https://doi.org/10.1016/S0048-9697(99)00025-X

Yeh, J. T., Resnik, K. P., Rygle, K., Pennline, H. W., Semi-Batch Absorption and Regeneration Studies for CO2 Capture by Aqueous Ammonia., Fuel Processing Technology, 86, 2005, pp. 1533-1546. DOI: https://doi.org/10.1016/j.fuproc.2005.01.015

How to Cite

APA

Hoyos Barreto, A. E., Jiménez Correa, M. M., Ortíz Muñoz, A. & Montes de Correa, C. (2008). Cement plant gaseous pollutant emission reduction technologies. Ingeniería e Investigación, 28(3), 41–46. https://doi.org/10.15446/ing.investig.v28n3.15118

ACM

[1]
Hoyos Barreto, A.E., Jiménez Correa, M.M., Ortíz Muñoz, A. and Montes de Correa, C. 2008. Cement plant gaseous pollutant emission reduction technologies. Ingeniería e Investigación. 28, 3 (Sep. 2008), 41–46. DOI:https://doi.org/10.15446/ing.investig.v28n3.15118.

ACS

(1)
Hoyos Barreto, A. E.; Jiménez Correa, M. M.; Ortíz Muñoz, A.; Montes de Correa, C. Cement plant gaseous pollutant emission reduction technologies. Ing. Inv. 2008, 28, 41-46.

ABNT

HOYOS BARRETO, A. E.; JIMÉNEZ CORREA, M. M.; ORTÍZ MUÑOZ, A.; MONTES DE CORREA, C. Cement plant gaseous pollutant emission reduction technologies. Ingeniería e Investigación, [S. l.], v. 28, n. 3, p. 41–46, 2008. DOI: 10.15446/ing.investig.v28n3.15118. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/15118. Acesso em: 27 dec. 2025.

Chicago

Hoyos Barreto, Andrés Emilio, Mónica María Jiménez Correa, Alejandro Ortíz Muñoz, and Consuelo Montes de Correa. 2008. “Cement plant gaseous pollutant emission reduction technologies”. Ingeniería E Investigación 28 (3):41-46. https://doi.org/10.15446/ing.investig.v28n3.15118.

Harvard

Hoyos Barreto, A. E., Jiménez Correa, M. M., Ortíz Muñoz, A. and Montes de Correa, C. (2008) “Cement plant gaseous pollutant emission reduction technologies”, Ingeniería e Investigación, 28(3), pp. 41–46. doi: 10.15446/ing.investig.v28n3.15118.

IEEE

[1]
A. E. Hoyos Barreto, M. M. Jiménez Correa, A. Ortíz Muñoz, and C. Montes de Correa, “Cement plant gaseous pollutant emission reduction technologies”, Ing. Inv., vol. 28, no. 3, pp. 41–46, Sep. 2008.

MLA

Hoyos Barreto, A. E., M. M. Jiménez Correa, A. Ortíz Muñoz, and C. Montes de Correa. “Cement plant gaseous pollutant emission reduction technologies”. Ingeniería e Investigación, vol. 28, no. 3, Sept. 2008, pp. 41-46, doi:10.15446/ing.investig.v28n3.15118.

Turabian

Hoyos Barreto, Andrés Emilio, Mónica María Jiménez Correa, Alejandro Ortíz Muñoz, and Consuelo Montes de Correa. “Cement plant gaseous pollutant emission reduction technologies”. Ingeniería e Investigación 28, no. 3 (September 1, 2008): 41–46. Accessed December 27, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/15118.

Vancouver

1.
Hoyos Barreto AE, Jiménez Correa MM, Ortíz Muñoz A, Montes de Correa C. Cement plant gaseous pollutant emission reduction technologies. Ing. Inv. [Internet]. 2008 Sep. 1 [cited 2025 Dec. 27];28(3):41-6. Available from: https://revistas.unal.edu.co/index.php/ingeinv/article/view/15118

Download Citation

CrossRef Cited-by

CrossRef citations3

1. E Y Mora, A Sarmiento, E Vera. (2016). Alumina and quartz as dielectrics in a dielectric barrier discharges DBD system for CO2hydrogenation. Journal of Physics: Conference Series, 687, p.012020. https://doi.org/10.1088/1742-6596/687/1/012020.

2. Yi Gao, Meigen Zhang, Jia Guo, Liren Xu. (2022). Impact of the oxidation of SO2 by NO2 on regional sulfate concentrations over the North China Plain. Atmospheric Pollution Research, 13(3), p.101337. https://doi.org/10.1016/j.apr.2022.101337.

3. Golam Sarwar, Kathleen Fahey, Roger Kwok, Robert C. Gilliam, Shawn J. Roselle, Rohit Mathur, Jian Xue, Jianzhen Yu, William P.L. Carter. (2013). Potential impacts of two SO2 oxidation pathways on regional sulfate concentrations: Aqueous-phase oxidation by NO2 and gas-phase oxidation by Stabilized Criegee Intermediates. Atmospheric Environment, 68, p.186. https://doi.org/10.1016/j.atmosenv.2012.11.036.

Dimensions

PlumX

Article abstract page views

960

Downloads

Download data is not yet available.