Publicado

2008-01-01

Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses

Los biopolímeros como materiales para el desarrollo de productos en aplicaciones farmacéuticas y de uso biomédico

DOI:

https://doi.org/10.15446/ing.investig.v28n1.14868

Palabras clave:

biopolymer, modified release, therapeutic system, biomedical device (en)
biopolímeros, liberación modificada, sistemas terapéuticos, dispositivos biomédicos (es)

Descargas

Autores/as

  • Manuel Guillermo Rojas Cortés Investigación & Desarrollo Carval de Colombia S.C.A.
  • Bibiana Margarita Vallejo Díaz Universidad Nacional de Colombia
  • Jairo Ernesto Perilla Perilla Universidad Nacional de Colombia

Biopolymers have been widely studied for use in pharmaceutical applications. They have been used for modifying drug release, orientating a drug towards its therapeutic target, penetrating physiological barriers (tissues and cells) and protecting unstable therapeutic agents against physiological conditions which are present in a less invasive administration routes. The importance of biopolymers in designing new biomedical devices must thus be stressed, especially when a pharmaceutical substance must be incorporated into a polymer matrix. A new generation of alternatives for human health has thus been generated by designing pharmaceutical therapeutic systems in line with the concept of “integrated custom-made product design”. This document reviews the trends concerning using biopolymers for designing products having pharmaceutical and biomedical applications. The paper also introduces the elements which should be mastered by engineers for obtaining material which can be used in the health field and tries to provide a reference point regarding the state of the art in this specific field of knowledge.

Los biopolímeros han sido ampliamente estudiados en aplicaciones farmacéuticas para modificar la liberación de principios activos, localización de los fármacos en su diana terapéutica, sobrepaso de barreras fisiológicas (tisulares y celulares) y la protección de agentes terapéuticos inestables a las condiciones fisiológicas presentes en las vías de administración menos invasivas. Así mismo, es notable la importancia en el uso de biopolímeros para el diseño de los nuevos dispositivos biomédicos combinados, en los cuales la necesidad de incorporar sustancias con actividad farmacológica ha llevado a la generación de novedosas alternativas para el tratamiento de enfermedades en el ser humano, acercando el diseño de sistemas terapéuticos farmacéuticos al concepto de “diseño integral de producto a la medida”. Este documento presenta una revisión sobre las tendencias en el uso de biopolímeros al diseño de productos con aplicaciones farmacéuticas y biomédicas, así como los elementos necesarios que debe conocer el ingeniero para obtener un material que pueda ser utilizado en el campo de la salud y pretende servir de referencia al estado del arte en este campo específico del conocimiento.

Referencias

Abramson, S., Alexander, H., Best, S., Biomaterials Science., Ed. por B.D. Ratner, A.S. Hoffman, F.J. Schoen y J.E. Lemons, Elsevier, San Diego, 2004, pp. 67-68, 78-79, 100-112.

Agrawal, C.M., Ray, R.B, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering., Journal of Biomedical Materials Research, Vol 55, 2001, pp. 141-150 DOI: https://doi.org/10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J

Ahmed, A., Bonner, C., Desai, T., Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug deli very., Journal of Controlled Release, Vol 81, 2002, pp. 291-306. DOI: https://doi.org/10.1016/S0168-3659(02)00074-3

Ameye, D., Pringels, E., Foreman, P., Remon, J.P., Adriaensens, P., Storme, L., GELAN., Correlation between the molecular morphology and the biocompatibility of bio adhesive carriers prepared from spray-dried starch/carbopol blends, Polymer, Vol 46, 2005, pp. 2338-2345. DOI: https://doi.org/10.1016/j.polymer.2005.01.026

Anderson, J. M., Shive, M. S., Biodegradation and Biocompatibility of PLA and PLGA Microspheres., Adv Drug Del Rev, Vol 28, 1997, pp. 5-24. DOI: https://doi.org/10.1016/S0169-409X(97)00048-3

Arangoa. M. A., Campanero, M. A., Irache J. M., Potencial bioadhesivos de las nanopartículas de gliadina en el estómago., Revista Colombiana de Ciencias Químico-Farmacéuticas, Vol 33, 2004, pp. 38-47

Ba, M. G., Moreau, J. C., Sokal, D., Dunson, R, Dao, B., Kouedou, D., Diadhiou, F., A 5-year clinical evaluation of Norplant® implants in Senegal, Contraception, Vol 59, 1999, pp. 377-381. DOI: https://doi.org/10.1016/S0010-7824(99)00046-3

Balakrishnan, B., Jayakrishnan, A., Self-cross-linking polymers as injectable in situ forming biodegradable scaffold, Biomaterials, Vol 26, 2005, pp.3941-3951. DOI: https://doi.org/10.1016/j.biomaterials.2004.10.005

Barcellos, I. O., Carobrez, S. G., Pires, A., Alvárez, M., In vivo and in Vitro responses to poly (ethylene terephthalate– co- diethylene glycol terephthalate) and polyethylene oxide blends., Biomaterials, Vol 19, 1998, pp. 2075-2082. DOI: https://doi.org/10.1016/S0142-9612(98)00119-7

Berger, J., Reist, M., Mayer, J. M, Felt, O., Peppas, N. A., Gurny, R., Structure and interaction in covalently and ionically crosslinked chitosan hydrogels for biomedical applications, European Journal of Pharmaceutics and Biopharmaceutics, Vol 57, 2004, pp.19-34. DOI: https://doi.org/10.1016/S0939-6411(03)00161-9

Bohórquez, J., Tendencias en el desarrollo de sistemas terapéuticos., Tesis de Grado, Universidad Nacional de Colombia, 1996, pp. 2-6

Brache, V., Faundes, A., Álvarez, F. y García, A.G., Transition from Norplant® to Jadelle® in a clinic with extensive experience providing contraceptive implants., Contraception, Vol. 73, 2006, pp. 364-367 DOI: https://doi.org/10.1016/j.contraception.2005.10.015

Breitenbach, A., Pistel, K.F., Kissel, T., Biodegradable comb polyesters. Part II. Erosion and release properties of poly (vinyl alcohol)-g-poly(lactic-co-glycolic acid), Polymer, Vol. 41, 2000, pp. 4781-4792. DOI: https://doi.org/10.1016/S0032-3861(99)00710-7

Brocchini. S., Combinatorial Chemistry and Biomedical Polymer Development., Advanced Drug Delivery Reviews, Vol. 53, 2001, pp. 123-130. DOI: https://doi.org/10.1016/S0169-409X(01)00224-1

Brown, J. N., Miller, J. M., Altschuler, R. A., Nuttall, A. L., Osmotic pump implant for chronic infusion of drugs into the inner ear., Hearing Research, Vol 70, 1993, pp.167-172. DOI: https://doi.org/10.1016/0378-5955(93)90155-T

Buchanan, J. M., Upman, P. J., Tallin R. F, ISO 10993-4: A Practical Guide to ISO 10993-4: Hemocompatibility, en línea., Medical Plastics and Biomaterials Magazine, 1998, URL: http://www.devicelink.com/mddi/archive/98/11/009.html, Consultado: Mayo 01 de 2006.

Bures, P., Huang, Y., Oral, E., Peppas, N. A., Surface modifications and molecular imprinting of polymers in medical and pharmaceuticals applications, Journal of Controlled Release, Vol. 72, 2001, pp.25-33. DOI: https://doi.org/10.1016/S0168-3659(01)00259-0

Carmelo, I., Orgaz, M., Avances médicos de la última década, Discovery Salud, 2006, en línea, URL: http://www.dsalud.com/numero16_6.htm, Consultado: Junio 17 de 2006.

Dang, W., Daviau, T., Ying, P., Zhao, Y., Nowotnik, D., Effects of GLIADEL® wafer initial molecular weight on the erosion of wafer and release of BCNU., Journal of Controlled Release, Vol. 42, 1996, pp. 83-92 DOI: https://doi.org/10.1016/0168-3659(96)01371-5

Davda, J., Labhasetwar, V., Characterization of nanoparticle uptake by endothelial cells., Int. J. Pharm, Vol. 233, 2002, pp. 51-59 DOI: https://doi.org/10.1016/S0378-5173(01)00923-1

Degertekin, M., Regar, E., Tanabe, K., Sirolimus-eluting stent for treatment of complex in-stent restenosis., JACC, Vol. 41, 2003, pp.184-189 DOI: https://doi.org/10.1016/S0735-1097(02)02704-3

Delgado, S. A., Stent con drogas, Revista CONAREC., Vol. 22, 2006, pp. 2-22.

Dilcher, C., Chan, R., Hellinga, D., Effect of ionizing radiation on the stability and performance of the TAXUS Express2 paclitaxel-eluting stent., Cardiovascular Radiation Medicine, Vol. 5, 2004, pp.136-141. DOI: https://doi.org/10.1016/j.carrad.2004.06.002

Dill, K., Strengthening Biomedicine’s Roots., Nature, Vol. 400, 1999, pp. 309-310. DOI: https://doi.org/10.1038/22415

Ding, T., Liu, Q., Shi, R., Tian, M, Yang, J., Zhang, L., Synthesis, characterization and in vitro degradation study of a novel and rapidly degradable elastomer., Polymer Degradation and Stability, Vol. 91, 2006, pp. 733-739. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.06.007

Dunbar, J., Illeperuma, A., Milovanovic, J., A placebo - and active comparator - controlled dose escalation study of the pharmacokinetics, pharmacodynamics, and safety of inhaled large porous particle (AIR®) epinephrine in normal volunteers., Journal of Allergy and Clinical Immunology, Vol. 113 (Sup 1), 2004, pp. S405-S433. DOI: https://doi.org/10.1016/j.jaci.2004.01.404

Edwards, D., Prud'homme, R., Hickey, A., Oberdörster, G., Engineering particle system for pulmonary drug delivery., en línea, URL: http://www.deas.harvard.edu/projects/weitzlab/jeanresearch/PulmonaryDrugDelivery.html, Cosultado:

Junio 20 de 2006.

Edwards, D. A., Hanes, J., Large porous particles for pulmonary drug delivery, Science, Vol 276, 1997, pp.1868-1871. Elisseeff, J., Ansetht, K., Simst, D., Mcintosh, W., Transdermal photopolymerization for minimally invasive implantation., Proc. Natl. Acad. Sci. Vol. 96, 1999, pp. 3104-3107. DOI: https://doi.org/10.1073/pnas.96.6.3104

FDA., Required Biocompatibility Training and Toxicology Pro files for Evaluation of Medical Devices May 1, 1995 (G95- 1), en línea, URL: http://www.fda.gov/cdrh/g951.html, Consultado: Marzo 15 de 2006.

Fernández, A., Estado del arte de los stents recubiertos., Gaceta cardiovascular, en línea, URL: http://www.televida.org.co/images/archivos/clinica/gacetaedicion13.pdf, Consultado: Junio 02 de 2006.

Fuster, V., La rapamicina: del laboratorio al tratamiento de las arterias en los pacientes., Revista Española de Cardiología, Vol. 56 (Supl 1), 2003, pp.2-6.

Gao, X., Tao, W., Lu, W., Zhang Q., Zhang, Y., Jiang, X., Fu, S., Lectin-conjugated PEG-PLA nanoparticles: Preparation and brain delivery after intranasal administration., Biomaterials, Vol. 27, 2006, pp. 3482-3490 DOI: https://doi.org/10.1016/j.biomaterials.2006.01.038

Gopferich, A., Langer, R., Modeling monomer release from bioerodible polymers, Journal of Controlled Release, Vol. 33, 1995, pp. 55-69. DOI: https://doi.org/10.1016/0168-3659(94)00064-2

Gulsen, D., Chauhan, A., Ophthalmic drug delivery through contact lenses., Investigative Ophthalmology & Visual Science, Vol. 45, 2004, pp.2342-2347. DOI: https://doi.org/10.1167/iovs.03-0959

Guo, W. X.., Huang, K. X.., Preparation and properties of poly(dimer acido decanedioic acid) copolymer and poly (dimmer acid-tetradecanedioic acid) copolymer., Polymer Degradation and Stability, Vol. 84, 2004, pp. 375-381. DOI: https://doi.org/10.1016/j.polymdegradstab.2003.10.012

Hägerström, H., Polymer Gels as Pharmaceutical Dosage Forms., Tesis de Grado presentada a ACTA Universitatis Upsaliensis, para optar al grado de Doctor of Philosophy, 2003, pp, 9-16.

Hans M.y Lowman, A., Biodegradable nanoparticles for drug delivery and targeting., Current Opinion in Solid State and Materials Science, Vol. 6, 2002, pp.319-327. DOI: https://doi.org/10.1016/S1359-0286(02)00117-1

Hehl. E. M., Beck. R., Luthard K., Guthoff, R., Drewelow. B., Improved penetration of aminoglycosides and fluoroquinolones into the aqueous humor of patients by means of Acuvue contact lenses., European Journal of Clinical Pharmacology, Vol. 55, 1999, pp.317-323. DOI: https://doi.org/10.1007/s002280050635

Heller, J., Hoffman, A. S., En “Biomaterials Science”., Ed. por B.D., Ratner, A.S., Hoffman, F.J. Schoen y J.E. Lemons, Elsevier, San Diego, 2004, pp. 628-645.

Herreras, J. M., Lentes de contacto y medicaciones tópicas y sistémicas., en línea, URL: http://www.oftalmo.com/publicaciones/lentes/cap27.htm, Consultado: Junio 04 de 2006.

Hillery. A. M., BioArtificial muscle implants as drug delivery systems., Pharmaceutical Science & Technology Today, Vol. 3, 2000, pp. 78-78 DOI: https://doi.org/10.1016/S1461-5347(00)00244-3

Hilt, J. Z., Peppas, N. A., Microfabricated drug delivery devices., International Journal of Pharmaceutics, Vol. 306, 2005, pp.15-23 DOI: https://doi.org/10.1016/j.ijpharm.2005.09.022

Hoerstrup. S. P., Lu, L., Lysaght, M. J., En “Biomaterials Science”., Ed. por B.D. Ratner, A.S. Hoffman, F.J. Schoen y J. E. Lemons, Elsevier, San Diego, 2004, pp. 709-722, 735-746.

Hoffman, A. S., En Biomaterials Science., Ed. por. Ratner B.D, Hoffman A.S, Schoen F.J y. Lemons J.E, Elsevier, San Diego, 2004, pp. 107-112.

INVIMA., Decreto número 4725 de 2005, en línea, URL: http://www.invima.gov.co/version1/, Consultado: Abril 25 de 2006.

Jhonson, G. M., Upman, P. J., Tallin, R. F., ISO 10993, A Practical Guide to ISO 10993-3: Genotoxicity, en línea., Medical Plastics and Biomaterials Magazine, 1998, URL: http://www.devicelink.com/mddi/archive/98/10/012.html, Consultado: Mayo 01 de 2006.

Justo, J. B., La Ciencia y la Ingeniería de los Biomateriales, un Desafío Interdisciplinario., Ciencia Hoy, Vol. 9, 1998, pp. 50-59.

Kaparissides, C., Alexandridou, S., Kotti, K., Chaitidou, S., Recent advances in novel drug delivery systems., Journal of Nanotechnology, Online, Vol. 2, 2006, pp.1-11.

Kavimandan, N. J., Losi, E., Peppas, N. A., Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates., Biomaterials, Vol. 27, 2006, pp.3846-3854. DOI: https://doi.org/10.1016/j.biomaterials.2006.02.026

Keys, K., Andreopoulos, F., Peppas, N., Poli (ethylene glycol) Star Polymer Hydrogels., Macromolecules, Vol. 31, 1998, pp. 8149-8156. DOI: https://doi.org/10.1021/ma980999z

Kleinmann, G., Apple, D.J., Chew, J., Hydrophilic acrylic intraocular lens as a drug-delivery system: Pilot study., J. Cataract. Refract., Vol. 32, 2006, pp.652-654. DOI: https://doi.org/10.1016/j.jcrs.2006.01.038

Kolybaba. M. A., Tabil, L. G., Panigrahi, S. A, Recent developments in the biopolymer industry, 2004 North Central ASAE/CSAE Conference Sponsored by the Manitoba Section of CSAE. Winnipeg., Manitoba Canada. September 24-25, 2004.

Kothwala, D., Raval, A., Choubey. Paclitaxel Drug Delivery from Cardiovascular Stent., Trends Biomater. Artif. Organs, Vol. 19, 2006, pp. 88-92.

Langer, R., Peppas, N. A., Advances in biomaterials, drug delivery and bionanotechnology., AIChE, Vol. 49, 2003, pp. 2990- 3006.

Langer, R., Drug delivery and targeting., Nature, Vol. 392, 1998, pp.5-10.

Langer, R. S., Peppas, N. A., Advances in biomaterials, drug delivery, and bionanotechnology., AIChW Journal, Vol. 49, 2003, pp. 2990-3006. DOI: https://doi.org/10.1002/aic.690491202

Langer, R. S., Peppas, N. A., Present and future applications of biomaterials in controlled drug delivery system., Biomaterials, Vol. 2, 1981, pp. 201-214. DOI: https://doi.org/10.1016/0142-9612(81)90059-4

Langer, R. S., Tirrel, D., A Designing materials for biology and medicine., Nature, Vol. 428, 2004, pp. 487-492. DOI: https://doi.org/10.1038/nature02388

Lastres, J. L., Nuevos sistemas orales de liberación modificada, Schironia, Vol. 1, 2002, pp. 63-71.

Lloyd, A., Improving the Biocompatibility of Silicone., Materialstoday, Vol. 19, 2003. DOI: https://doi.org/10.1016/S1369-7021(03)01119-2

Lloyd, A. W, Swarbrick, J., Drug Delivery and Targeting., Edited by Anya M. Hillery, New York, 2001.

Lozano, I., Herrera, C., Morís, C., Stent liberador de fármacos en lesiones de tronco coronario izquierdo en pacientes no candidatos a revascularización quirúrgica., Revista Española de Cardiología, Vol. 58, 2005, pp.145-152. DOI: https://doi.org/10.1157/13071888

Luo, Y., Kirker, K. y Prestwich, G., Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery., Journal of Controlled Release, Vol. 69, 2000, pp.169-184. DOI: https://doi.org/10.1016/S0168-3659(00)00300-X

Macaya, C., ¿Está justificado el uso sistemático de stent con fármacos? Argumentos en contra., Revista Española de Cardiología, Vol. 57, 2004, pp. 109-115. DOI: https://doi.org/10.1016/S0300-8932(04)77072-4

Madsen, F., Peppas, N. A., Complexation graft copolymer networks: swelling properties, calcium binding and proteo lytic enzyme inhibition., Biomaterials, Vol. 20, 1999, pp.1701-1708. DOI: https://doi.org/10.1016/S0142-9612(99)00071-X

Maia, J. L., Santana, H. A., Re, M. I., The effect of some processing conditions on the characteristics of biodegradable microspheres obtained by an emulsion solvent evaporation process., Brazilian Journal of Chemical Engineering, Vol. 21, 2004, pp. 1-12. DOI: https://doi.org/10.1590/S0104-66322004000100002

Matsuda, T., Device-Directed Therapeutic Drug Delivery Systems, Journal of Controlled Release, Vol. 78, 2002, pp.125-131. DOI: https://doi.org/10.1016/S0168-3659(01)00493-X

Middleton, J. C., Tipton, A. J., Synthetic biodegradable polymers as orthopedic devices., Biomaterials, Vol. 21,2000, pp. 2335-2346. DOI: https://doi.org/10.1016/S0142-9612(00)00101-0

Mitragotri. S., Farrel, J., Tang, H., Terahara, T., Kost, J., Langer, R., Determination of threshold energy dose for ultrasound-induced transdermal drug transport., Journal of Controlled Release, Vol.63, 2000, pp. 41-52. DOI: https://doi.org/10.1016/S0168-3659(99)00178-9

Mitragotri, S., Effect of therapeutic ultrasound on partition and difusión coefficients in human stratum corneum., Journal of Controlled Release, Vol. 71, 2001, pp. 23-29. DOI: https://doi.org/10.1016/S0168-3659(00)00344-8

Modi, S., Jain, J. P., Kumar, N., Polymer-drug conjugates: Recent development for anticancer drugs., CRIPS, Vol. 5, 2004, pp.2-8.

Moreno, R., Stents recubiertos y otros dispositivos antirrestenosis., Revista Española de Cardiología, Vol. 58, 2005, pp. 842-862. DOI: https://doi.org/10.1157/13077236

Morishita, M., Goto, T., Nakamura, K., Lowman, A. M., Takayama, K., Peppas, N. A., Novel oral insulin delivery system based on complexation polymer hydrogels: Single and multiple administration studies in type 1 and 2 diabetic rats., Journal of Controlled Release, Vol. 110, 2006, pp. 587-594. DOI: https://doi.org/10.1016/j.jconrel.2005.10.029

Morishita, M., Lowman, A., M., Takatama, K., Nagai, T., Peppas, N. A., Elucidation of the mechanism of incorporation of insulin in controlled release system based on complexation polymers, Journal of controlled Release, Vol. 81, 2002, pp. 25-32. DOI: https://doi.org/10.1016/S0168-3659(02)00019-6

Mulhbacher, J., Ispas–Szabo, P., Oullet, M., Alex, S., Matesscu, A., Mucoadhesive properties of cross – linked high amylose starch derivatives., International Journal of Biological Macromolecules, Vol. 40, 2006, pp. 9-14. DOI: https://doi.org/10.1016/j.ijbiomac.2006.05.003

Oral. E., Peppas, N. A., Dynamic studies of moleculaer imprinting polymerizations., Polymer, Vol. 45, 2004, pp. 6163-6173. DOI: https://doi.org/10.1016/j.polymer.2004.06.059

Owens. D. E., Peppas, N. A., Opsonization, biodistribution by pharmacokinetics of polymeric nanoparticles., International Journal of Pharmaceutics, Vol. 307, 2006, pp.93-102. DOI: https://doi.org/10.1016/j.ijpharm.2005.10.010

Özdemir, N y Sahin, J., Design of a controlled release osmotic pump system of ibuprofen, International Journal of Pharmaceutics, Vol. 158, 1997, pp. 91-97. DOI: https://doi.org/10.1016/S0378-5173(97)00250-0

Parker, A. P, Reynolds, P. A, Lewis, A. L., Investigation into potential mechanisms promoting biocompatibility of polymeric biomaterials containing the phosphorylcholine moiety A physicochemical and biological study., Colloids and Surfaces B: Biointerfaces, Vol. 46, 2005, pp. 204-217. DOI: https://doi.org/10.1016/j.colsurfb.2005.11.009

Peña, J., Corrales, T., Izquierdo-Barba, I., Doadrio, A.L., Valletrgi-M., Long term degradation of poly (ε-caprolactone) films in biologically related fluids., Polymer Degradation and Stability, Vol. 91, 2006, pp. 1424-1432. DOI: https://doi.org/10.1016/j.polymdegradstab.2005.10.016

Peppas, N. A., Huang, Y., Nanoscale technology of muco adhesive interactions., Advanced Drug Delivery Reviews, Vol. 56, 2004, pp.1675-1687. DOI: https://doi.org/10.1016/j.addr.2004.03.001

Peppas, N. A., Bures, P., Leobandung, W., Ichikawa, H., Hydrogels in pharmaceutical

formulations., European Journal of Pharmaceutics and Biopharmaceutics, Vol. 50, 2000, pp.27-46. DOI: https://doi.org/10.1016/S0939-6411(00)00090-4

Peppas, N. A., Wright, S. L., Drug diffusion and binding in ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid)., European Journal of Pharmaceutics and Biopharmaceutics, Vol. 46, 1998, pp. 15-29 DOI: https://doi.org/10.1016/S0939-6411(97)00113-6

Peppas, N. A., Devices based on intelligent biopolymers for oral protein delivery., International Journal of Pharmaceutics, Vol. 277, 2004(a), pp.11-17. DOI: https://doi.org/10.1016/j.ijpharm.2003.03.001

Peppas, N. A., Intelligent therapeutics: biomimetic system and nanotechnology in drug delivery., Advanced Drug Delivery Reviews, Vol. 56, 2004(b), pp.1529-1531. DOI: https://doi.org/10.1016/j.addr.2004.07.001

Podual, K., Doyle, F. J. III., Peppas, N. A., Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts., Journal of Controlled Release, Vol. 67, 2000, pp. 9-17. DOI: https://doi.org/10.1016/S0168-3659(00)00195-4

Prieskorn, D. M., Miller, J. M., Technical report: chronic and acute intracochlear infusion in rodents., Hearing Research, Vol. 140, 2000, pp. 212-215. DOI: https://doi.org/10.1016/S0378-5955(99)00193-8

Ratner, B. D., Hoffman, A. S., En: Biomaterials Science, Ed. por. Ratner B.D, Hoffman A.S, Schoen F.J y. Lemons J.E, Elsevier, San Diego, 2004, pp. 201-215.

Ratner. B. D., En: Biomaterials Science, Ed. por B.D. Ratner, A.S. Hoffman, F.J. Schoen y J.E. Lemons, Elsevier, San Diego, 2004, pp. 10-19.

Refojo, M. F., En “Biomaterials Science”, Ed. por B.D. Ratner, A.S. Hoffman, F.J. Schoen y J.E. Lemons, Elsevier, San Diego, 2004, pp. 583-590.

Ribeiro, E., Balestrini, S., Saaibi, J. F., Prevención de reestenosis post implante de stents coronarios, Revista del CONAREC, Vol. 20, 2004, pp.113-132.

Rojas, F., El Control de los Dispositivos Médicos., Editorial, Revista Cubana de Salud Pública, Vol. 30, 2004. Rosero, M. V, Estudio de los biomateriales para el desarrollo de endoprótesis., tesis de grado, Ingeniería Mecánica y Mecatrónica, Universidad Nacional de Colombia, 2003, pp. 101-102.

Rusell-Jones, G. J., Oral vaccine delivery., Journal of Controlled Release, Vol. 65, 2000, pp. 49.-54 DOI: https://doi.org/10.1016/S0168-3659(99)00231-X

Saettone, M. F., Monti, D., Torracca M.T., Chetoni, P., Mucoadhesive ophthalmic vehicles: evaluation of polymeric low-viscosity formulations., Journal of Ocular Pharmacology, Vol. 10, 1994, pp.83-92 DOI: https://doi.org/10.1089/jop.1994.10.83

Saez, V., Hernández, E., López, L., Liberación controlada de fármacos., Aplicaciones biomédicas, Revista Iberoamericana de Polímeros, Vol. 4, 2003, pp. 111-122.

Saéz, V., Hernández, E., Angulo, L. S., Mecanismos de liberación de fármacos desde materiales poliméricos., Revista Iberoamericana de Polímeros, Vol. 5, 2004, pp. 55-70.

Salamat Miller, N., Chittchang, M., Johnston, T.P., The use of mucoadhesive polymers in buccal drug delivery., Advanced Drug Delivery Reviews, Vol. 7, 2005, pp. 1666 – 1691. DOI: https://doi.org/10.1016/j.addr.2005.07.003

Sano, K., Tokoro, T., Imai, Y., A new drug delivery system utilizing piggyback contact lenses., Acta Ophthalmologica Scandinava, Vol. 74, 1996, pp. 243-248. DOI: https://doi.org/10.1111/j.1600-0420.1996.tb00085.x

Santus, G., Baker, R. W., Osmotic drug delivery: a review of the patent literature., Journal of Controlled Release, Vol. 35, 1995, pp. 1-21. DOI: https://doi.org/10.1016/0168-3659(95)00013-X

Saraydin, D., Saraydin, S. U., Karadag, E., Koptagle, E., Guven, O., In vivo biocompatibility of radiation crosslinked acrylamide copolymers., Nuclear Instruments and Methods in Physics Research, Vol. B 217, 2004, pp. 281-292. DOI: https://doi.org/10.1016/j.nimb.2003.09.035

Satturwar, P.M., Fulzele, S.V., Dorle, A.K., Biodegradation and In vivo Biocompatibility of Rosin: a natural film forming polymer., AAPS PharmSciTech, Vol. 4, 2003, Article 55, pp. 1-6. DOI: https://doi.org/10.1208/pt040455

Schwarz, U., Forces and elasticity in cell adhesion., Tesis presentada a la Universidad de Potsdam, para optar al grado de Doctor of Philosophy, 2004, pp. 1-16.

Shepherd, R.K., Xu, J., A multichannel scale tympani electrode array incorporating a drug delivery system for chronic intracochlear infusion., Hearing Research, Vol. 172, 2002, pp.92-98. DOI: https://doi.org/10.1016/S0378-5955(02)00517-8

Shin, S, Kim, H., Oh, I, Cho, Ch., Yang, K., Development of tretinoin gels for enhanced transdermal delivery., European Journal of Pharmaceutics and Biopharmaceutics, Vol. 60, 2005, pp. 67-71. DOI: https://doi.org/10.1016/j.ejpb.2005.01.008

Siepmann, J., Local controlled drug delivery to the brain., Preface, International Journal of Pharmaceutics, Vol. 314, 2006, pp. 99-100. DOI: https://doi.org/10.1016/j.ijpharm.2006.01.038

Sinko, P. J., Martin’s Physical Pharmacy and Pharmaceutical Sciences., Fifth Edition, Lippincott Williams E. Wilkins, Baltimore, 2006, pp. 615-616

Sivin, I., Mishell, D. R, Diaz, S., Prolonged effectiveness of Norplant® capsule implants: A 7-years study., Contraception, Vol. 61, 2000, pp. 187-194. DOI: https://doi.org/10.1016/S0010-7824(00)00095-0

Stupp, S. I., Donners, J., Li, L., Mata, Y. A,, Expanding Frontiers in Biomaterials., MRS Bulletin, Vol. 30, 2005, pp. 864– 873. DOI: https://doi.org/10.1557/mrs2005.276

Su, Y. Ch., Lin, L., A water – powered micro drug delivery system., Journal of Micro Electromechanical Systems, Vol. 13, 2004, pp. 75- 82. DOI: https://doi.org/10.1109/JMEMS.2003.823215

Svenson, S., Tomalia, D. A., Dendrimers in biomedical applications-reflections on the field., Advanced Drug Delivery Reviews, Vol. 57, 2005, pp.2106-2129. DOI: https://doi.org/10.1016/j.addr.2005.09.018

Tabata, Y., Murakami, Y., Ikada, Y., Tumor accumulation of poly(vinyl alcohol) of different sizes after intravenous injection., Journal of Controlled Release, Vol. 50, 1998, pp.123-133. DOI: https://doi.org/10.1016/S0168-3659(97)00129-6

Tabata, Y., The importance of drug delivery system in tissue engineering., PSTT, Vol. 3, 2000, pp. 80-89. DOI: https://doi.org/10.1016/S1461-5347(00)00242-X

Tan, Y., Peh, K. K, Al Hanbali, O., Effect of carbopol and polyvinylpyrrolidone on the mechanical, rheological, and release properties of bioadhesive polyethylene glycol gels AAPS PharmSciTech, Vol. 1, 2003, article 24. DOI: https://doi.org/10.1208/pt010324

Thacharodi, D., Panduranga, K., Rate-controlling biopolymer membranes as transdermal delivery systems for nifedipine: development and in vitro evaluations., Biomaterials, Vol. 17, 1996, pp. 1307-1311. DOI: https://doi.org/10.1016/S0142-9612(96)80007-X

Tharanathan, R. N., Biodegradable films and composite coatings: past, present and future trends., Food Science & Technology, Vol.14, 2003, pp. 71-78. DOI: https://doi.org/10.1016/S0924-2244(02)00280-7

Tomalia, D. A., Fréchet, J. M., Introduction to “dendrimers and dendritic polymers”., Progress in Polymer Science, Vol. 30, 2005, pp. 217-219. DOI: https://doi.org/10.1016/j.progpolymsci.2005.03.003

Tomalia, D. A., The dendritic state, Materialstoday, Vol. 8, 2005, pp. 34-46. DOI: https://doi.org/10.1016/S1369-7021(05)00746-7

Tsapis, N., Bennett, D., Jackson, B., Weitz, D. A., Edwards, D. A., Trojan particles: Large porous carriers of nanoparticles for drug delivery., PNAS, Vol. 99, 2002, pp. 12001-12005 DOI: https://doi.org/10.1073/pnas.182233999

Ungaro, F., De Rosa, G., Miro, A., Quaglia, F. La Rotonda M.I., Cyclodextrins in the production of large porous particles: development of dry powders for the sustained release of insulin to the lungs, European Journal of Pharmaceutical Science, In Press, Accepted Manuscript, Available online 22 May 2006. DOI: https://doi.org/10.1016/j.ejps.2006.05.005

USP United States Pharmacopeial Convention, Inc., Farmacopea de los Estados Unidos de América 29, Formulario Nacional 24. Edición en español. Philadelphia, USA. 2006. pp. 3050-3058.

Vallejo, B., Aplicación de la metodología de diseño axiomático al desarrollo de un comprimido de liberación modificada., Tesis de Maestría en Ingeniería de Materiales y Procesos. Universidad Nacional de Colombia, Departamento de Ingeniería Mecánica, 2003.

Vallejo, B., Estudio del fenómeno de adhesión a superficies biológicas de películas obtenidas a partir de biopolímeros, para aplicación en el área de la salud. Propuesta de Tesis Doctoral. Universidad Nacional de Colombia, Departamento de Ingeniería Química, 2006.

Vaz, C., De Graaf, L.A., Reis, R.L., Cunha, A.M., In Vitro degradation behavior of biodegradable soy plastics: effects of cross linking with glyoxal and thermal treatment., Polymer Degradation and Stability, Vol. 81, 2003, pp. 65-74. DOI: https://doi.org/10.1016/S0141-3910(03)00063-6

Wallin, R. F., Upman, P. J., ISO 10993, A Practical Guide to ISO 10993-11: Systemic Effect., en línea, Medical Plastics and Biomaterials Magazine, 1998, URL: http://www.devicelink.com/mddi/archive/98/07/010.html, Consultado: Mayo 01 de 2006.

Wallin, R. F., Upman, P. J., ISO 10993, A Practical Guide to ISO 10993-6: Implant Effect, en línea, Medical Plastics and Biomaterials Magazine., 1998, URL: http://www.devicelink.com/mddi/archive/98/08/013.html, Consultado: Mayo 01 de 2006.

Wallin, R. F., Arscott, E. F., ISO 10993, A Practical Guide to ISO 10993-5: Citotoxicity., en línea, Medical Plastics and Biomaterials Magazine, 1998, URL: http://www.zdevicelink.com/mddi/archive/98/04/013.html, Consultado: Mayo 01 de 2006.

Wallin, R. F., Upman, P. J., ISO 10993-10, A Practical Guide to ISO 10993-10: Sensitization., en línea, Medical Plastics and Biomaterials Magazine, 1998, URL: http://www.devicelink.com/mddi/archive/98/05/025.html, Consultado: Mayo 01 de 2006.

Ward, M. E., Woodhouse, A., Mather, L. E., Morphine pharmacokinetics after pulmonary administration from a novel aerosol delivery system., Clinical Pharmacology & Therapeutics, Vol. 62, 1997, pp. 596-609. DOI: https://doi.org/10.1016/S0009-9236(97)90079-5

WHO., Medical Device Regulations Global overview and guiding principles., World Health Organization, Geneva, 2003.

Yamagata, T., Morishita, M., Kavimandan, N.J, Nakamura, K., Fukuoka, Y., Characterization of insulin protection properties of complexation hydrogels in gastric and intestinal enzyme fluids, Journal of Controlled Release, Vol. 112, 2006, pp. 343-349. DOI: https://doi.org/10.1016/j.jconrel.2006.03.005

Yeh, P.Y., Berenson, M. M., Samowitz, W.S., Kopecková, P., Kopecek, J., Site-specific drug delivery and penetration enhancement in the gastrointestinal tract., Journal of Controlled Release, Vol. 36, 1995, pp.109-124. DOI: https://doi.org/10.1016/0168-3659(95)00057-F

Zhang, H., Cui, W., Bei, J., Wang, S., Preparation of poly (lactide –co-glycolide –co-caprolactone) nanoparticles and their degradation behaviour in aqueous solution., Polymer Degradation and Stability, Vol. 91, 2006, pp. 1929-1936. DOI: https://doi.org/10.1016/j.polymdegradstab.2006.03.004

Zweers, M. L., Biodegradable nanoparticles for intravascular drug delivery., Thesis Doctoral Dissertation, Thesis University of Twente, Enschede, The Netherlands, 2003.

Cómo citar

APA

Rojas Cortés, M. G., Vallejo Díaz, B. M. y Perilla Perilla, J. E. (2008). Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses . Ingeniería e Investigación, 28(1), 57–71. https://doi.org/10.15446/ing.investig.v28n1.14868

ACM

[1]
Rojas Cortés, M.G., Vallejo Díaz, B.M. y Perilla Perilla, J.E. 2008. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses . Ingeniería e Investigación. 28, 1 (ene. 2008), 57–71. DOI:https://doi.org/10.15446/ing.investig.v28n1.14868.

ACS

(1)
Rojas Cortés, M. G.; Vallejo Díaz, B. M.; Perilla Perilla, J. E. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses . Ing. Inv. 2008, 28, 57-71.

ABNT

ROJAS CORTÉS, M. G.; VALLEJO DÍAZ, B. M.; PERILLA PERILLA, J. E. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses . Ingeniería e Investigación, [S. l.], v. 28, n. 1, p. 57–71, 2008. DOI: 10.15446/ing.investig.v28n1.14868. Disponível em: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14868. Acesso em: 11 ene. 2025.

Chicago

Rojas Cortés, Manuel Guillermo, Bibiana Margarita Vallejo Díaz, y Jairo Ernesto Perilla Perilla. 2008. «Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses ». Ingeniería E Investigación 28 (1):57-71. https://doi.org/10.15446/ing.investig.v28n1.14868.

Harvard

Rojas Cortés, M. G., Vallejo Díaz, B. M. y Perilla Perilla, J. E. (2008) «Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses », Ingeniería e Investigación, 28(1), pp. 57–71. doi: 10.15446/ing.investig.v28n1.14868.

IEEE

[1]
M. G. Rojas Cortés, B. M. Vallejo Díaz, y J. E. Perilla Perilla, «Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses », Ing. Inv., vol. 28, n.º 1, pp. 57–71, ene. 2008.

MLA

Rojas Cortés, M. G., B. M. Vallejo Díaz, y J. E. Perilla Perilla. «Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses ». Ingeniería e Investigación, vol. 28, n.º 1, enero de 2008, pp. 57-71, doi:10.15446/ing.investig.v28n1.14868.

Turabian

Rojas Cortés, Manuel Guillermo, Bibiana Margarita Vallejo Díaz, y Jairo Ernesto Perilla Perilla. «Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses ». Ingeniería e Investigación 28, no. 1 (enero 1, 2008): 57–71. Accedido enero 11, 2025. https://revistas.unal.edu.co/index.php/ingeinv/article/view/14868.

Vancouver

1.
Rojas Cortés MG, Vallejo Díaz BM, Perilla Perilla JE. Biopolymers as materials for developing products in pharmaceutical applications and biomedical uses . Ing. Inv. [Internet]. 1 de enero de 2008 [citado 11 de enero de 2025];28(1):57-71. Disponible en: https://revistas.unal.edu.co/index.php/ingeinv/article/view/14868

Descargar cita

CrossRef Cited-by

CrossRef citations2

1. Gabriel Castillo-Dalí, Rocío Velázquez-Cayón, M. Angeles Serrera-Figallo, Agustín Rodríguez-González-Elipe, José-Luis Gutierrez-Pérez, Daniel Torres-Lagares. (2015). Importance of Poly(lactic-co-glycolic acid) in Scaffolds for Guided Bone Regeneration: A Focused Review. Journal of Oral Implantology, 41(4), p.e152. https://doi.org/10.1563/AAID-JOI-D-13-00225.

2. Alhelí Hernández-Pérez, Francisco Gabriel Granados-Martínez, Nelly Flores-Ramírez, Salomón Ramiro Vásquez-García, Lada Domratcheva-Lvova. (2024). Strengthening biopolymer composite membranes via electrospinning cellulose/chitosan with MWCNTs. MRS Advances, https://doi.org/10.1557/s43580-024-01012-x.

Dimensions

PlumX

Visitas a la página del resumen del artículo

844

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a