Publicado

2024-09-20

Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento

Effect of Al, C, and Si doping on B5N10-nanocages for enhancing environmental toxic gas adsorption: simulation technique of high-performance gas sensor

Efeito da dopagem Al, C e Si no nanogaiolas de nitreto de boro (B5N10_NC) para melhorar a adsorção de gases tóxicos ambientais: técnica de simulação de sensor de gás de alto desempenho

DOI:

https://doi.org/10.15446/rev.colomb.quim.v52n3.112067

Palabras clave:

contaminación del aire, sensor de gases, dopaje, nanojaulas de nitruro de boro B5N10_NC, teoría funcional de la densidad (es)
air pollution, gas sensor, doping, boron nitride nanocages B5N10_NC, density functional theory (en)
poluição do ar, sensor de gás, dopagem, nanogaiolas de nitreto de boro , densidade teoria funcional (pt)

Descargas

Autores/as

Las propiedades electrónicas, magnéticas y termodinámicas de la adsorción de gases tóxicos, incluidas las moléculas de NO, NO2 y N2O, mediante el uso de nanojaulas de nitruro de boro (B5N10_NC) dopadas con aluminio (Al), carbono (C) y silicio (Si) se han investigado utilizando la teoría funcional de la densidad (DFT). Según el análisis de resonancia cuadrupolar nuclear (RCN), las B5N10_NC dopadas con C ha mostrado la fluctuación más baja en el potencial eléctrico y la carga atómica negativa más alta en NO@C–B4N10_NC, NO2@C–B4N10_NC y N2O@C–B4N10_NC. Además, los resultados informados de la espectroscopía de resonancia magnética nuclear (RMN) han demostrado que la aceptación de electrones para los átomos dopantes del X–B4N10_NC, a través de la adsorción de moléculas de gas, se puede ordenar como Si ˃ Al ˃ C. Según los resultados de la cantidad de energía libre de Gibbs ( ), la eficiencia máxima del dopaje de átomos de Al, C y Si en B5N10_NC, para la adsorción de moléculas de gas, depende del enlace covalente entre las moléculas de gas y X–B4N10_NC como un potente sensor para la eliminación de la contaminación del aire.

The electronic, magnetic and thermodynamic properties of adsorption of toxic gases, including NO, NO2, and N2O molecules, by using boron nitride nanocages (B5N10_NC) doped with aluminum (Al), carbon (C), and silicon (Si) have been investigated using density functional theory (DFT). Based on nuclear quadrupole resonance (NQR) analysis, C-doped on B5N10_NC has shown the lowest fluctuation in electric potential and the highest negative atomic charge in NO@C–B4N10_NC, NO2@C–B4N10_NC, and N2O@C–B4N10_NC. Furthermore, the reported results of NMR spectroscopy have exhibited that the yield of electron accepting for doping atoms on the X–B4N10_NC through gas molecules adsorption can be ordered as Si ˃ Al ˃ C. Based on the results of  amounts in this research, the maximum efficiency of Al, C, and Si atoms doping of B5N10_NC for gas molecules adsorption depends on the covalent bond between NO, NO2, N2O molecules and X–B4N10_NC as a potent sensor for air pollution elimination.

As propriedades eletrônicas, magnéticas e termodinâmicas da adsorção de gases tóxicos, incluindo moléculas de NO, NO2 e N2O, usando nanogaiolas de nitreto de boro (B5N10_NC) dopadas com alumínio (Al), carbono (C) e silício (Si) foram investigadas usando densidade teoria funcional (DFT). De acordo com a análise de ressonância quadrupolo nuclear (RCN), o B5N10_NC dopado com C apresentou a menor flutuação no potencial elétrico e a maior carga atômica negativa em NO@C–B4N10_NC, NO2@C–B4N10_NC e N2O@C–B4N10_NC. Além disso, os resultados relatados da espectroscopia de ressonância magnética nuclear (RMN) mostraram que a aceitação de elétrons para os átomos dopantes do X–B4N10_NC, através da adsorção de moléculas de gás, pode ser ordenada como Si ˃ Al ˃ C. De acordo com os resultados de a quantidade de energia livre de Gibbs  a máxima eficiência de dopagem dos átomos de Al, C e Si em B5N10_NC, para a adsorção de moléculas de gás, depende da ligação covalente entre as moléculas de gás e X–B4N10_NC como um poderoso sensor para remoção de poluição do ar.

Referencias

[1] D. Gonzalez-Ortiz, C. Salameh, M. Bechelany y P. Miele, “Nanostructured boron nitride-based materials: synthesis and applications”, Mater. Today Adv., vol. 8, pp. 100−107, ene. 2020. DOI: https://doi.org/10.1016/j.mtadv.2020.100107

[2] N. S. Mishra y P. Saravanan, “A review on the synergistic features of hexagonal boron nitride (white graphene) as adsorbent-photo active nanomaterial”, Chemistry Select, vol. 3, nro. 28, pp. 8023–8034, ene. 2018. DOI: https://doi.org/10.1002/slct.201801524

[3] Q. H. Weng, X. B. Wang, X. Wang, Y. Bando y D. Golberg, “Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications”, Chem. Soc. Rev, vol. 45, nro. 14, pp. 3989–4012, ene. 2016. DOI: https://doi.org/10.1039/C5CS00869G

[4] A .D. O. Muñoz, A.Escobedo-Morales, E. Skakerzadeh, E. C. Anota, “Effect of homonuclear boron bonds in the adsorption of DNA nucleobases on boron nitride nanosheets”, J. Mol. Liquids, vol. 322, pp.114951, ene. 2021. DOI: https://doi.org/10.1016/j.molliq.2020.114951

[5] J. Carreto Escobar, M. Salazar Villanueva, A. Bautista Hernández, D. Cortés-Arriagada y E. Chigo Anota, “Interactions of B12N12 fullerenes on graphene and boron nitride nanosheets: A DFT study”, J. Mol. Graph. Model, vol. 86, pp. 27–34, ene. 2019. DOI: https://doi.org/10.1016/j.jmgm.2018.10.003'

[6] D. V. Shtansky et al., “Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids”, Nanomaterials, vol. 12, nro. 16, pp. 2810. ene. 2022. DOI: https://doi.org/10.3390/nano12162810

[7] Y. Yang, Y. Peng, M. F. Saleem, Z. Chen, W. Sun, “Hexagonal Boron Nitride on III–V Compounds: A Review of the Synthesis and Applications”, Materials, vol. 15, nro. 3, pp. 4396. ene. 2022. DOI: https://doi.org/10.3390/ma15134396

[8] A. Davies et al., “Lattice-Matched Epitaxial Graphene Grown on Boron Nitride”, Nano Lett, vol. 18, nro. 1, pp. 498–504, ene.2018. DOI: https://doi.org/10.1021/acs.nanolett.7b04453

[9] A. Escobedo-Morales et al., “Structural and Physicochemical Properties of Carbon Doped Boron Nitride Fullerenes: Effect of Doping Level and Atomic Arrangement”, Avd. Theor. Simul, vol. 7, nro. 3, pp. 2300698, ene. 2024. DOI: https://doi.org/10.1002/adts.202300698

[10] R. S. Bangari, V.K. Yadav, J.K. Singh, N. Sinha, “Fe3O4-functionalized boron nitride nanosheets as novel adsorbents for removal of arsenic (III) from contaminated water”, ACS Omega, vol. 5, nro.18, pp. 10301–10314, ene. 2020. DOI: https://doi.org/10.1021/acsomega.9b04295

[11] Y. H. Chao et al., “Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal”, Chem. Eng. J., vol. 387, pp. 124138, ene. 2020. DOI: https://doi.org/10.1016/j.cej.2020.124138

[12] Z. Zheng, M. Cox y B. Li, “Surface modification of hexagonal boron nitride nanomaterials: a review”, J Mater Sci, vol. 53, pp. 66–99, ene. 2018. DOI: https://doi.org/10.1007/s10853-017-1472-0

[13] F. Mollaamin y M. Monajjemi, “Graphene-based resistant sensor decorated with Mn, Co, Cu for nitric oxide detection: Langmuir adsorption & DFT method”, Sensor Review, vol. 43, nro.4, 266–279, ene. 2023. DOI: https://doi.org/10.1108/SR-03-2023-0040

[14] Y. Guo, R. X. Wang, P. F. Wang, L. Rao y C. Wang, “Developing a novel layered boron nitride-carbon nitride composite with high efficiency and selectivity to remove protonated dyes from water”, ACS Sustain. Chem., vol. 7 nro. 6 pp. 5727–5741, ene. 2019. DOI: https://doi.org/10.1021/ACSSUSCHEMENG.8B05150

[15] M. C. F. Bautista, D. Cortés-Arriagada, E. Shakerzadeh y E. C. Anota, “Acetylsalicylic acid interaction with Boron nitride nanostructures – A density functional analysis”, J. Mol Liquids, vol. 355, pp. 118980, ene. 2022. DOI: https://doi.org/10.1016/j.molliq.2022.118980

[16] H. N. Vergara-Reyes, M. Acosta-Alejandro y E. Chigo-Anota, “Quantum-mechanical assessment of the adsorption of nitric oxide molecules on the magnetic carbon nitride (C36N24)-fullerene”, Struct Chem, vol. 32, pp. 1775–1786, ene. 2021. DOI: https://doi.org/10.1007/s11224-021-01736-8

[17] F. Mollaamin y M. Monajjemi, “Determination of GaN nanosensor for scavenging of toxic heavy metal ions (Mn2+, Zn2+, Ag+, Au3+, Al3+, Sn2+) from water: Application of green sustainable materials by molecular modeling approach”, Comput Theor Chem, vol. 1237, pp. 114646, ene. 2024. DOI: https://doi.org/10.1016/j.comptc.2024.114646

[18] K. Bakhshi, F. Mollaamin y M. Monajjemi, “Exchange and correlation effect of hydrogen chemisorption on nano V(100) surface: A DFT study by generalized gradient approximation (GGA)”, J. Comput. Theor. Nanosci, vol. 8, nro. 4, pp. 763–768, ene. 2011. DOI: https://doi.org/10.1166/jctn.2011.1750

[19] F. Mollaamin y M. Monajjemi, “Trapping of toxic heavy metals from water by GN–nanocage: Application of nanomaterials for contaminant removal technique”, J. Mol. Struct, vol. 1300, nro. 137214, ene. 2024. DOI: https://doi.org/10.1016/j.molstruc.2023.137214

[20] F. Mollaamin, “On the behavior of boron nitride Nanotube-Flavin adenine Dinucleotide interaction ion implantation order to design Biofuel cells”, Journal of Computational and Theoretical Nanoscience, vol. 11, nro. 9, pp. 2017–2022, ene. 2014. DOI: https://doi.org/10.1166/jctn.2014.3601

[21] F. Mollaamin, S. Mohammadi y Z. Khalaj et al., “Computational Modelling of Boron Nitride Nanosheet for Detecting and Trapping of Water Contaminant”, Russ. J. Phys. Chem. B, vol. 18, pp. 67–82, ene. 2024. DOI: https://doi.org/10.1134/S1990793124010330

[22] M. A. A. Zadeh et al., “Density functional theory study and anti-cancer properties of shyshaq plant: In viewpoint of nano biotechnology”, J. Comput. Theor. Nanosci, vol. 12, nro. 11, pp. 4358–4367, ene. 2015. DOI: https://doi.org/10.1166/jctn.2015.4366

[23] F. Mollaamin, “Insight therapeutic viral diseases: application of SWCNT in drug delivery method”, Rev. Colomb. Quim., vol. 52, nro. 2, pp. 28–35, ene. 2023. DOI: https://doi.org/10.15446/rev.colomb.quim.v52n2.111888

[24] F. Mollaamin y M. Monajjemi, “In Situ Ti-Embedded SiC as Chemiresistive Nanosensor for Safety Monitoring of CO, CO2, NO, NO2: Molecular Modelling by Conceptual Density Functional Theory”, Russ. J. Phys. Chem. B, vol. 18, pp. 49–66, ene. 2024. DOI: https://doi.org/10.1134/S1990793124010159

[25] F. Mollaamin y M. Monajjemi, “Structural, Electromagnetic and Thermodynamic Analysis of Ion Pollutants Adsorption in Water by Gallium Nitride Nanomaterial: a Green Chemistry Application”, Russ. J. Phys. Chem. B, vol. 18, pp. 533–548, ene. 2024. DOI: https://doi.org/10.1134/S199079312402012X

[26] G. Henkelman, A. Arnaldsson y H. Jónsson, “A fast and robust algorithm for Bader decomposition of charge density”, Computational Materials Science, vol. 36, nro. 3, pp. 354–360, ene. 2006. DOI: https://doi.org/10.1016/j.commatsci.2005.04.010

[27] F. Mollaamin y M. Monajjemi, “In Silico-DFT Investigation of Nanocluster Alloys of Al-(Mg, Ge, Sn) Coated by Nitrogen Heterocyclic Carbenes as Corrosion Inhibitors”, J Clust Sci, vol. 34, nro. 6, pp. 2901–2918, ene. 2023. DOI: https://doi.org/10.1007/s10876-023-02436-5

[28] F. Mollaamin y M. Monajjemi, “Transition metal (X = Mn, Fe, Co, Ni, Cu, Zn)-doped graphene as gas sensor for CO2 and NO2 detection: A molecular modeling framework by DFT perspective”, J. Mol. Model., vol. 29, nro. 4, pp. 119, ene. 2023. DOI: https://doi.org/10.1007/s00894-023-05526-3

[29] F. Mollaamin y M. Monajjemi, “Adsorption ability of Ga5N10 nanomaterial for removing metal ions contamination from drinking water by DFT”, Int J Quantum Chem, vol. 124, nro. 2, pp. e27348, ene. 2024. DOI: https://doi.org/10.1002/qua.27348

[30] P. Hohenberg y W. Kohn, “Inhomogeneous Electron Gas”, Phys. Rev. B, vol. 136, pp. B864–B871, ene. 1964. DOI: https://doi.org/10.1103/PhysRev.136.B864

[31] W. Kohn y L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects”, Phys. Rev., vol. 140, A1133–A1138, ene. 1965. DOI: https://doi.org/10.1103/PhysRev.140.A1133

[32] F. Mollaamin, “Features of Parametric Point Nuclear Magnetic Resonance of Metals Implantation on Boron Nitride Nanotube by Density Functional Theory/Electron Paramagnetic Resonance”, Journal of Computational and Theoretical Nanoscience, vol. 11, nro. 11, pp. 2393−2398, ene. 2014. DOI: https://doi.org/10.1166/jctn.2014.3653

[33] F. Mollaamin et al., “Thermodynamic and Solvent Effect on Dynamic Structures of Nano Bilayer-Cell Membrane: Hydrogen Bonding Study”, J. Comput. Theor. Nanosci., vol. 12, nro. 10, pp. 314−3154, ene. 2015. DOI: https://doi.org/10.1166/jctn.2015.4092

[34] F. Mollaamin y M. Monajjemi, “Tailoring and functionalizing the graphitic-like GaN and GaP nanostructures as selective sen-sors for NO, NO2, and NH3 adsorbing: A DFT study”, J. Mol. Model., vol. 29, nro. 6, pp. 170, ene. 2023. DOI: https://doi.org/10.1007/s00894-023-05567-8

[35] F. Mollaamin, S. Shahriari, M. Monajjemi y Z. Khalaj, “Nanocluster of Aluminum Lattice via Organic Inhibitors Coating: A Study of Freundlich Adsorption”, J. Clust. Sci., vol. 34, nro. 3, pp.1547–1562, ene. 2023. DOI: https://doi.org/10.1007/s10876-022-02335-1

[36] F. Mollaamin y M. Monajjemi, “Doping of Graphene Nanostructure with Iron, Nickel and Zinc as Selective Detector for the Toxic Gas Removal: A Density Functional Theory Study”, C–Journal of Carbon Research, vol. 9, pp. 20, ene. 2023. DOI: https://doi.org/10.3390/c9010020

[37] E. M. Sarasia, S. Afsharnezhad, B. Honarparvar, F. Mollaamin y M. Monajjemi, “Theoretical study of solvent effect on NMR shielding tensors of luciferin derivatives”, Phys Chem Liquids, vol. 49, nro. 5, pp. 561−571, ene. 2011. DOI: https://doi.org/10.1080/00319101003698992

[38] M. Khaleghian, M. Zahmatkesh, F. Mollaamin y M. Monajjemi, “Investigation of Solvent Effects on Armchair Single-Walled Carbon Nanotubes: A QM/MD Study”, Fuller. Nanotub. Carbon Nanostructures, vol. 19, nro. 4, pp. 251–261, ene. 2011, DOI: https://doi.org/10.1080/15363831003721757

[39] F. Mollaamin y M. Monajjemi, “Harmonic Linear Combination and Normal Mode Analysis of Semiconductor Nanotubes Vibrations”, J Comput Theor Nanosci, vol. 12, nro. 6, pp. 1030–1039, ene. 2015. DOI: https://doi.org/10.1166/jctn.2015.3846

[40] F. Mollaamin, M. Monajjemi, S. Salemi y M. T. Baei, “A Dielectric Effect on Normal Mode Analysis and Symmetry of BNNT Nanotube”, Fuller. Nanotub. Carbon Nanostructures, vol. 19, nro. 3, pp. 182–196, ene. 2011. DOI: https://doi.org/10.1080/15363831003782932

[41] M. Monajjemi, M. Khaleghian, N. Tadayonpour y F. Mollaamin, “The effect of different solvents and temperatures on stability of single-walled carbon nanotube: A QM/MD study”, Int J Nanosci, vol. 9, nro. 5, 517–529, ene. 2010. DOI: https://doi.org/10.1142/S0219581X10007071

[42] F. Mollaamin y M. Monajjemi, “The influence of Sc, V, Cr, Co, Cu, Zn as ferromagnetic semiconductors implanted on B5N10-nanocarrier for enhancing of NO sensing: An environmental eco-friendly investigation”, Comput Theor Chem, vol. 1237, pp. 114666, ene. 2024. DOI: https://doi.org/10.1016/j.comptc.2024.114666

[43] F. Mollaamin y M. Monajjemi, “Molecular modelling framework of metal-organic clusters for conserving surfaces: Langmuir sorption through the TD-DFT/ONIOM approach”, Molecular Simulation, vol. 49, nro. 4, pp. 365–376, ene. 2023. DOI: https://doi.org/10.1080/08927022.2022.2159996

[44] S. H. Vosko, L. Wilk y M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis”, Can. J. Phys, vol. 58, nro. 8, pp. 1200–1211, ene. 1980. DOI: https://doi.org/10.1139/p80-159

[45] Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016. [Software].

[46] GaussView, Version 6.06.16, Dennington, Roy; Keith, Todd A.; Millam, John M. Semichem Inc., Shawnee Mission, KS, 2016. [Software].

[47] F. Mollaamin y M. Monajjemi, “Nanomaterials for Sustainable Energy in Hydrogen-Fuel Cell: Functionalization and Characterization of Carbon Nano-Semiconductors with Silicon, Germanium, Tin or Lead through Density Functional Theory Study”, Russ. J. Phys. Chem. B, vol. 18, pp. 607–623, ene. 2024. DOI: https://doi.org/10.1134/S1990793124020271

[48] M. Monajjemi, F. Mollaamin, S. Shojaei, “An overview on coronaviruses family from past to COVID-19: Introduce some inhibitors as antiviruses from Gillan’s plants”, Biointerface Res. Appl. Chem., vol. 10, nro. 3, pp. 5575–5585, ene. 2020, DOI: https://doi.org/10.33263/BRIAC103.575585

[49] S. Shahriari, F. Mollaamin y M. Monajjemi, “Increasing the Performance of {[(1-x-y) LiCo0.3Cu0.7] (Al and Mg doped)] O2}, xLi2MnO3, yLiCoO2 Composites as Cathode Material in Lithium-Ion Battery: Synthesis and Characterization”, Micromachines, vol. 14, nro. 2, pp. 241, ene. 2023. DOI: https://doi.org/10.3390/mi14020241

[50] F. Mollaamin y M. Monajjemi, “Influence of Transition Metals for Emergence of Energy Storage in Fuel Cells through Hydrogen Adsorption on the MgAl Surface”, Russ. J. Phys. Chem. B, vol. 18, pp. 398–418, ene. 2024. DOI: https://doi.org/10.1134/S199079312402026X

[51] M. Monajjemi, L. Mahdavian, F. Mollaamin y M. Khaleghian, “Interaction of Na, Mg, Al, Si with carbon nanotube (CNT): NMR and IR study”, Russ. J. Inorg. Chem, vol. 54, nro. 9. pp. 1465–1473, ene. 2009, DOI: https://doi.org/10.1134/S0036023609090216

[52] F. Mollaamin y M. Monajjemi, “Competitive Intracellular Hydrogen-Nanocarrier Among Aluminum, Carbon, or Silicon Implantation: a Novel Technology of Eco-Friendly Energy Storage using Research Density Functional Theory”, Russ. J. Phys. Chem. B, vol. 18, pp. 805–820, ene. 2024. DOI: https://doi.org/10.1134/S1990793124700131

[53] M. Monajjemi, M. T. Baie y F. Mollaamin, “Interaction between threonine and cadmium cation in [Cd(Thr)] (n = 1-3) complexes: Density functional calculations”, Russian Chemical Bulletin, vol. 59, pp. 886–889, ene. 2010. DOI: https://doi.org/10.1007/s11172-010-0181-5

[54] L. Cardona, J. Jiménez y N. Vanegas, “Nuclear quadrupole resonance for explosive detection”, Ingeniare. Rev. chil. ing., vol. 23, nro. 3, pp. 458–472, ene. 2015. DOI: http://dx.doi.org/10.4067/S0718-33052015000300015

[55] A. Gregorovič y T. Apih, “WURST–QCPMG sequence and ‘spin-lock’ in 14N nuclear quadrupole resonance”, J. Magn. Reson., vol. 2 33, pp. 96–102, ene. 2013. DOI: https://doi.org/10.1016/j.jmr.2013.05.010

[56] F. Mollaamin y M. Monajjemi, “Graphene Embedded with Transition Metals for Capturing Carbon Dioxide: Gas Detection Study Using QM Methods”, Clean Technol, vol. 5, pp. 403–417, ene. 2023. DOI: https://doi.org/10.3390/cleantechnol5010020

[57] A. S. Peshkovsky et al., “Noise-resilient multi-frequency surface sensor for nuclear quadrupole resonance”, J. Magn. Reson., vol. 194, nro. 2, pp. 222–229, ene. 2008. DOI: https://doi.org/10.1016/j.jmr.2008.07.003

[58] F. Mollaamin y M. Monajjemi, “Electric and Magnetic Evaluation of Aluminum–Magnesium Nanoalloy Decorated with Germanium Through Heterocyclic Carbenes Adsorption: A Density Functional Theory Study”, Russ. J. Phys. Chem. B, vol. 17, nro. 3, pp. 658–672, ene. 2023. DOI: https://doi.org/10.1134/S1990793123030223

[59] F. Mollaamin y M. Monajjemi, “Application of DFT and TD-DFT on Langmuir Adsorption of Nitrogen and Sulfur Heterocycle Dopants on an Aluminum Surface Decorated with Magnesium and Silicon”, Computation, vol. 11, nro. 6, pp. 108, ene. 2023. DOI: https://doi.org/10.3390/computation11060108

[60] B. Khalili Hadad, F. Mollaamin y M. Monajjemi, “Biophysical chemistry of macrocycles for drug delivery: A theoretical study”, Russian Chemical Bulletin, vol . 60, nro. 2, pp. 238−241, ene. 2011. DOI: https://doi.org/10.1007/s11172-011-0039-5

Cómo citar

IEEE

[1]
F. Mollaamin, «Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento», Rev. Colomb. Quim., vol. 52, n.º 3, pp. 59–70, sep. 2024.

ACM

[1]
Mollaamin, F. 2024. Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento. Revista Colombiana de Química. 52, 3 (sep. 2024), 59–70. DOI:https://doi.org/10.15446/rev.colomb.quim.v52n3.112067.

ACS

(1)
Mollaamin, F. Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento. Rev. Colomb. Quim. 2024, 52, 59-70.

APA

Mollaamin, F. (2024). Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento. Revista Colombiana de Química, 52(3), 59–70. https://doi.org/10.15446/rev.colomb.quim.v52n3.112067

ABNT

MOLLAAMIN, F. Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento. Revista Colombiana de Química, [S. l.], v. 52, n. 3, p. 59–70, 2024. DOI: 10.15446/rev.colomb.quim.v52n3.112067. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/112067. Acesso em: 21 ene. 2025.

Chicago

Mollaamin, Fatemeh. 2024. «Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento». Revista Colombiana De Química 52 (3):59-70. https://doi.org/10.15446/rev.colomb.quim.v52n3.112067.

Harvard

Mollaamin, F. (2024) «Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento», Revista Colombiana de Química, 52(3), pp. 59–70. doi: 10.15446/rev.colomb.quim.v52n3.112067.

MLA

Mollaamin, F. «Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento». Revista Colombiana de Química, vol. 52, n.º 3, septiembre de 2024, pp. 59-70, doi:10.15446/rev.colomb.quim.v52n3.112067.

Turabian

Mollaamin, Fatemeh. «Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento». Revista Colombiana de Química 52, no. 3 (septiembre 20, 2024): 59–70. Accedido enero 21, 2025. https://revistas.unal.edu.co/index.php/rcolquim/article/view/112067.

Vancouver

1.
Mollaamin F. Efecto del dopaje con Al, C y Si en nanojaulas de nitruro de boro (B5N10_NC) para mejorar la adsorción de gases tóxicos ambientales: técnica de simulación en un sensor de gas de alto rendimiento. Rev. Colomb. Quim. [Internet]. 20 de septiembre de 2024 [citado 21 de enero de 2025];52(3):59-70. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/112067

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

126

Descargas

Los datos de descargas todavía no están disponibles.