Publicado

2025-11-08

Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre

Moisture Adsorption and Thermodynamic Properties of Hydrolyzed Potato Tocosh and Ginger Flours

Propriedades de adsorção de umidade e características termodinâmicas de farinha de tocosh hidrolisada de batata e farinha de gengibre

DOI:

https://doi.org/10.15446/rev.colomb.quim.v54n1.113962

Palabras clave:

Propiedades termodinámicas, Hidrólisis enzimática-ácida, Modelo GAB (es)
Thermodynamic properties, Enzymatic acid hydrolysis, GAB model (en)
Propriedades termodinâmicas, Hidrólise ácida-enzimática, Modelo GAB (pt)

Descargas

Autores/as

En esta investigación se compararon las propiedades de adsorción de humedad (modelo GAB) y las características termodinámicas —calor isostérico (Qst), entropía (ΔS), energía libre de Gibbs (ΔG), área de adsorción (AS) y energía de activación (Ea)— de harinas de tocosh de papa, in natura (HTs), hidrolizada enzimáticamente (HTe) e hidrolizada por vía ácida (HTa), y de harina de jengibre (HJe). Se evaluó la influencia de los compuestos bioactivos (carbohidratos, fenoles y gingeroles) sobre el comportamiento higroscópico y la estabilidad de los materiales. La HTa presentó la mayor humedad de monocapa (X₀ = 0,1105–0,0982 g H₂O/g s.s.), la cual disminuyó con la temperatura. La HJe exhibió los parámetros GAB (C y K) y el Qst más altos (55,9–54,77 kJ/kmol), además de una ΔS de 29,695 kJ/kmol·K. Los valores negativos de ΔG indicaron adsorción espontánea. El AS fue mayor en la HTa (390,14 m²/g a 20 °C), mientras que su Ea fue la más baja (4,52 kJ/mol); esto refleja una adsorción rápida. Se recomienda secar las harinas hasta X₀ y emplear envases impermeables, especialmente para HTa, debido a su alta área expuesta. Los resultados aportan bases científicas para optimizar el procesamiento, almacenamiento y aplicación industrial de estas harinas en productos alimentarios y farmacéuticos con potencial nutracéutico.

In this study, the moisture adsorption properties (GAB model) and thermodynamic characteristics —isosteric heat (Qst), entropy (ΔS), Gibbs free energy (ΔG), adsorption area (AS), and activation energy (Ea)— of potato tocosh flours, in natura (HTs), enzymatically hydrolyzed (HTe), and acid hydrolyzed (HTa), and of ginger flour (HJe) were compared. The influence of bioactive compounds (carbohydrates, phenols, and gingerols) on the hygroscopic behavior and stability of the materials was evaluated. HTa showed the highest monolayer moisture (X₀ = 0.1105–0.0982 g H₂O/g d.s.), which decreased with temperature. HJe exhibited the highest GAB parameters (C and K) and Qst (55.9–54.77 kJ/kmol), and a ΔS of 29.695 kJ/kmol K. Negative ΔG values ​​indicated spontaneous adsorption. AS was highest for HTa (390.14 m²/g at 20 °C), while its Ea was the lowest (4.52 kJ/mol), reflecting rapid adsorption. Drying flours to X₀ and using impermeable containers are recommended, especially for HTa, due to their high exposed area. The results provide a scientific basis for optimizing the processing, storage, and industrial application of these flours in food and pharmaceutical products with nutraceutical potential.

Neste estudo, foram estudadas as propriedades de adsorção de humidade (modelo GAB) e as características termodinâmicas –calor isotérico (Qst), entropia (ΔS), energia livre de Gibbs (ΔG), área de adsorção (AS) e energia de ativação (Ea)– das farinhas de batata tocosh, in natura (HTs), hidrolisadas enzimaticamente (HTe) e hidrolisadas com ácido (HTa), e da farinha de gengibre (HJe). Foi avaliada a influência dos compostos bioativos (hidratos de carbono, fenóis e gingeróis) no comportamento higroscópico e na estabilidade dos materiais. HTa apresentou a maior humidade da monocamada (X₀ = 0,1105–0,0982 g H₂O/g d.s.), que diminuiu com a temperatura. O HJe apresentou os parâmetros GAB (C e K) e Qst mais elevados (55,9–54,77 kJ/kmol), e um ΔS de 29,695 kJ/kmol K. Valores negativos de ΔG indicaram adsorção espontânea. O SA foi superior para o HTa (390,14 m²/g a 20 °C), enquanto o seu Ea foi o mais baixo (4,52 kJ/mol), refletindo uma rápida adsorção. Recomenda-se a secagem das farinhas até X₀ e a utilização de recipientes impermeáveis, especialmente para HTa, devido à sua elevada área exposta. Os resultados fornecem uma base científica para otimizar o processamento, armazenamento e aplicação industrial dessas farinhas em produtos alimentares e farmacêuticos com potencial nutracêutico.

Referencias

[1] M. G. Izurieta y S. Tinajero, Trayectorias de la alimentación andina y mesoamericana, Quito, Universidad Andina Simón Bolívar, 2020. Disponible en: https://repositorio.uasb.edu.ec/bitstream/10644/7620/1/Izurieta%20M-CON-002-Trayectorias.pdf

[2] A. Ferrari, G. Vinderola y R. Weill, Alimentos fermentados: microbiología, nutrición, salud y cultura, Ciudad Autónoma de Buenos Aires, Instituto Danone del Cono Sur, 2020.

[3] M. E. Jimenez, C.M. O’Donovan, M. Fernandez y P.D. Cotter, “Microorganisms present in artisanal fermented food from South America”, Front. Microbiol., vol. 13, nro. 941866, pp. 1–18, 2022. DOI: https://doi.org/10.3389/fmicb.2022.941866

[4] F. Diestra, J. R. Ramos y G. P. Lacherre, Costumbres y gastronomía de la provincia de Sihuas – Ancash, Lima, Professionals On Line SAC, 2023.

[5] F. Mayta et al., “Development of new experimental dentifrice of peruvian solanum tuberosum (tocosh) fermented by water stress: Antibacterial and cytotoxic activity”, J. Contemp. Dent. Pract., vol. 20, nro. 10, pp. 1206–1211, 2019. DOI: https://doi.org/10.5005/jp-journals-10024-2681

[6] E. F. Yábar, V. Reyes y J. Casas, “Evaluación de la actividad antioxidante y antibacteriana del tocosh de papa (Solanum tuberosum)”, J. Agric. Food Sci., vol. 1, nro. 1, pp. 47–52, 2020. Disponible en: https://revistas.uncp.edu.pe/index.php/jafs/article/view/545

[7] J. R. Velasco et al., “Tocosh flour (Solanum tuberosum L.): A Toxicological assessment of traditional peruvian fermented potatoes”, Foods, vol. 9, nro. 719, pp. 1–16, 2020. DOI: https://doi.org/10.3390/foods9060719

[8] K. S. Silva, T. C. Polachini, M. Luna‐Flores, G. Luna‐Solano, O. Resende y J. Telis, “Sorption isotherms and thermodynamic properties of wheat malt under storage conditions”, J. Food Process Eng., vol. 44, nro. 9, pp. 1–12, 2021. DOI: https://doi.org/10.1111/jfpe.13784

[9] S. V. Paz y M. C. Ojeda, “Efecto antimicrobiano in vitro del extracto acuoso de Solanum tuberosum “papa fermentada” sobre Escherichia coli y Staphylococcus aureus”, UCV Sci. Biomed., vol. 4, nro. 3, pp. 9–22, 2021. DOI: https://doi.org/10.18050/ucvscientiabiomedica.v4i3.01

[10] M. N. Shaukat, A. Nazir y B. Fallico, “Ginger bioactives: A comprehensive review of health benefits and potential food applications”, Antioxidants, vol. 12, nro. 2015, pp. 1–12, 2023. DOI: https://doi.org/10.3390/antiox12112015

[11] S. Mathur, S. Pareek, R. Verma, D. Shrivastava y B. Prakash, “Therapeutic potential of ginger bio-active compounds in gastrointestinal cancer therapy: the molecular mechanism”, Nutrire, vol. 47, nro. 15, 2022. DOI: https://doi.org/10.1186/s41110-022-00166-8

[12] M. Zhang et al., “Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents”, Phytother Res., vol. 35, nro. 2, pp. 711–742, 2021. DOI: https://doi.org/10.1002/ptr.6858

[13] Q. Q. Mao et al., “Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe)”, Foods, vol. 8, nro. 185, pp. 1–21, 2019. DOI: https://doi.org/10.3390/foods8060185

[14] O. P. Murphy, M. Vashishtha, P. Palanisamy y K.V. Kumar, “A review on the adsorption isotherms and design calculations for the optimization of adsorbent mass and contact time”, ACS Omega, vol. 8, nro. 20, pp. 17407–17430, 2023. DOI: https://doi.org/10.1021/acsomega.2c08155

[15] S. Shimizu y N. Matubayasi, “Understanding sorption mechanisms directly from isotherms”, Langmuir, vol. 39, nro. 17, pp. 6113–6125, 2023. DOI: https://doi.org/10.1021/acs.langmuir.3c00256

[16] S. Abdullah, S. C. Keoh, H. M. Johar, N. A. Razak, A. R. Shaari y I. H. Rukunudin, “Mathematical modelling of moisture sorption isotherms by using BET and GAB models”, IOP Conf. Ser.: Mater. Sci. Eng., vol. 932, nro. 1, p. 012037, 2020. DOI: https://doi.org/10.1088/1757-899X/932/1/012037

[17] A. Metrane, A. Delhali, M. Ouikhalfan, A. Assen y Y. Belmabkhout, “Water vapor adsorption by porous materials: From chemistry to practical applications”, J. Chem. Eng. Data, vol. 67, nro. 7, pp. 1617–1653, 2022. DOI: https://doi.org/10.1021/acs.jced.2c00145

[18] G. S. Rosa, M. A. Moraes y L. A. A. Pinto, “Moisture sorption properties of chitosan”, J. Food Technol., vol. 43, nro. 3, pp. 415–420, 2010. DOI: https://doi.org/10.1016/j.lwt.2009.09.003

[19] F. R. Hay, S. Rezaei y J. Buitink, “Seed moisture isotherms, sorption models, and longevity”, Front. Plant Sci., vol. 13, nro. 891913, pp. 1–14, 2022. DOI: https://doi.org/10.3389/fpls.2022.891913

[20] X. Cheng et al., “Water adsorption properties of microalgae powders: Thermodynamic analysis and structural characteristics”, J. Stored Prod. Res., vol. 101, p. 102093, 2023. DOI: https://doi.org/10.1016/j.jspr.2023.102093

[21] M. Edrisi y T. A. G. Langrish, “Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder”, Food Sci. Technol., vol. 62, nro. 1, pp. 875–882, 2015. DOI: https://doi.org/10.1016/j.lwt.2014.09.064

[22] C. Madhusudan, C. T. Ramachandra, U. Nidoni, S. Hiregoudar, J. Ram, y N. Naik, “Moisture sorption isotherms and estimation of isosteric heat of sorption of donkey milk powder”, J. Food Process Preserv., vol. 46, nro. 5, 2022. DOI: https://doi.org/10.1111/jfpp.16604

[23] G. Zhu, Q. Jin, Y. Liu, Y. Lin, J. Wang y X. Li, “Moisture sorption and thermodynamic properties of Camellia oleifera seeds as influenced by oil content”, Int. J. Agric. Biol. Eng., vol. 14, nro. 1, pp. 251–258, 2021. DOI: https://doi.org/10.25165/j.ijabe.20211401.5457

[24] N. Maftoon, A. Alizadeh, A. Kazemiyan, A. Ehsan, S. Baghaei y F. Mirazimi, “Effects of thermodynamic properties of rice and ambient conditions on moisture migration during storage at naturally ventilated warehouses”, Arabian J. Chem., vol. 16, nro. 104761, pp. 1–16, 2023. DOI: https://doi.org/10.1016/j.arabjc.2023.104761

[25] J. Martín, M. Vioque y R. Gómez, “Thermodynamic properties of moisture adsorption of whole wheat flour. Calculation of net isosteric heat”, Int. J. Food Sci. Technol., vol. 47, nro. 7, pp. 1487–1495, 2012. DOI: https://doi.org/10.1111/j.1365-2621.2012.02996.x

[26] L. Tavares, L. R. Sousa, S. Magalhães da Silva, P. S. Lima y J. M. Oliveira, “Moisture sorption isotherms and thermodynamic properties of biodegradable polymers for application in food packaging industry”, Polymers, vol. 15, nro. 7, pp. 1–15, 2023. DOI: https://doi.org/10.3390/polym15071634

[27] S. Tunç y O. Duman, “Thermodynamic properties and moisture adsorption isotherms of cottonseed protein isolate and different forms of cottonseed samples”, J. Food Eng., vol. 81, nro. 1, pp. 133–143, 2007. DOI: https://doi.org/10.1016/j.jfoodeng.2006.10.015

[28] B. R. Bhandari y B. P. Adhikari, “Water activity in food processing and preservation”, en Drying Technologies in Food Processing, X. D. Chen y A. S. Mujumdar, eds., Singapur, Blackwell Publishing, 2008, pp. 55–89. Disponible en: https://books.google.com.pe/books?id=yB-VhPpQxv0C&lpg=PP1&hl=es&pg=PR3#v=onepage&q&f=false

[29] G. A. Collazos-Escobar, V. Hurtado-Cortés, A. F. Bahamón-Monje y N. Gutiérrez-Guzmán, “Mathematical modeling of water sorption isotherms in specialty coffee beans processed by wet and semidry postharvest methods”, Sci Rep., vol. 15, pp. 3898, 2025. DOI: https://doi.org/10.1038/s41598-024-83702-y

[30] D. Kaur, A. A. Wani, D. S. Sogi y U. S. Shivhare, “Sorption isotherms and drying characteristics of tomato peel isolated from tomato pomace”, Drying Technol., vol. 24, nro. 11, pp. 1515–1520, 2006. DOI: https://doi.org/10.1080/07373930600961371

[31] E. C. López, M. Castillo, I. Pilatowsky, L. F. Santis y B. Castillo, “Moisture sorption isotherms, isosteric heat, and Gibbs free energy of stevia leaves”, J. Food Process Preserv., vol. 45, nro. 1, pp. 1–30, 2021. DOI: https://doi.org/10.1111/jfpp.15016

[32] B. K. Koua, P. M. E. Koffi, P. Gbaha y S. Toure, “Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta)”, J. Food Sci. Technol., vol. 51, nro. 9, pp. 1711–1723, 2014. DOI: https://doi.org/10.1007/s13197-012-0687-y

[33] R. Fakhfakh, D. Mihoubi y N. Kechaou, “Moisture sorption isotherms and thermodynamic properties of bovine leather”, Heat Mass Transfer, vol. 54, nro. 4, pp. 1163–1176, 2018. DOI: https://doi.org/10.1007/s00231-017-2223-0

[34] E. A. Sánchez, B. Abril, J. Benedito, J. Bon y J. V. García, “Water desorption isotherms of pork liver and thermodynamic properties”, Food Sci. Technol., vol. 149, nro. 111857, pp. 1–10, 2021. DOI: https://doi.org/10.1016/j.lwt.2021.111857

[35] J. A. Camaño, A. M. Rivera y J. E. Zapata, “Sorption isotherms and thermodynamic properties of the dry silage of red tilapia viscera (Oreochromis spp.) obtained in a direct solar dryer”, Heliyon, vol. 7, nro. 4, e06798, pp. 1–8, 2021. DOI: https://doi.org/10.1016/j.heliyon.2021.e06798

[36] S. Arslan, “Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds”, Food Sci. Technol., vol. 119, nro. 108859, 2020. DOI: https://doi.org/10.1016/j.lwt.2019.108859

[37] K. Fan, L. Chen, X. Wei, J. He y F. Yan, “Moisture adsorption isotherms and thermodynamic properties of Auricularia auricula”, J. Food Process Preserv., vol. 39, nro. 6, pp. 1534–1541, 2015. DOI: https://doi.org/10.1111/jfpp.12379

[38] Z. Aksu y S. Tezer, “Biosorption of reactive dyes on the green alga Chlorella vulgaris”, Process Biochem., vol. 40, nro. 3–4, pp. 1347–1361, 2005. DOI: https://doi.org/10.1016/j.procbio.2004.06.007

[39] A. N. Ebelegi, N. Ayawei y D. Wankasi, “Interpretation of adsorption thermodynamics and kinetics”, Open Phys. Chem. J., vol. 10, nro. 3, pp. 166–182, 2020. DOI: https://doi.org/10.4236/ojpc.2020.103010

[40] N. A. Aviara, “Moisture sorption isotherms and isotherm model performance evaluation for food and agricultural products”, en Sorption in 2020s, G. Kyzas y N. Lazaridis, eds., IntechOpen, 2020, pp. 1–33. DOI: https://doi.org/10.5772/intechopen.87996

[41] A. Chuma, T. Ogawa, T. Kobayashi y S. Adachi, “Moisture sorption isotherm of durum wheat flour”, Food Sci. Technol. Res., vol. 18, nro. 5, pp. 617–622, 2012. DOI: https://doi.org/10.3136/fstr.18.617

[42] N. Abdenouri, A. Idlimam y M. Kouhila, “Sorption isotherms and thermodynamic properties of powdered milk”, Chem. Eng. Commun., vol. 197, nro. 8, pp. 1109–1125, 2010. DOI: https://doi.org/10.1080/00986440903412936

[43] M. Peleg, “Models of sigmoid equilibrium moisture sorption isotherms with and without the monolayer hypothesis”, Food Eng. Rev., vol. 12, nro. 1, pp. 1–13, 2020. DOI: https://doi.org/10.1007/s12393-019-09207-x

[44] M. S. Hasan, “Effect of storage temperature and periods on some characteristics of wheat flour quality”, Food Nutr. Sci., vol. 6, pp. 1148–1159, 2015. DOI: http://doi.org/10.4236/fns.2015.612120

[45] L. Pantoja-Tirado, G. Prieto-Rosales y E. Aguirre, “Caracterización de la harina de quinua (Chenopodium quinoa Willd.) y la harina de tarwi (Lupinus mutabilis Sweet) para su industrialización”, Rev. Tayacaja., vol. 3, nro. 1, pp. 76–83, 2020. DOI: https://doi.org/10.46908/rict.v3i1.72

[46] R. Moreira, F. Chenlo, M. J. Vázquez y P. Cameán, “Sorption isotherms of turnip top leaves and stems in the temperature range from 298 to 328 K”, J. Food Eng., vol. 71, nro. 2, pp. 193–199, 2005. DOI: https://doi.org/10.1016/j.jfoodeng.2004.10.033

[47] S. Oh, E. J. Lee y G. P. Hong, “Quality characteristics and moisture sorption isotherm of three varieties of dried sweet potato manufactured by hot air semi-drying followed by hot-pressing”, Food Sci. Technol., vol. 94, pp. 73–78, 2018. DOI: https://doi.org/10.1016/j.lwt.2018.04.044

[48] S. Brunauer, L. S. Deming, W. E. Deming y E. Teller, “On a theory of the van der Waals adsorption of gases”, J. Am. Chem. Soc., vol. 62, nro. 7, pp. 1723–1732, 1940. DOI: https://doi.org/10.1021/ja01864a025

[49] M. A. Dushkova, A. T. Simitchiev, H. R. Kalaydzhiev, P. Ivanova, N. D. Menkov y V. I. Chalova, “Comparison and modeling of moisture sorption isotherms of deproteinized rapeseed meal and model extrudate”, J. Food Process Preserv., vol. 46, nro. 11, 2022. DOI: https://doi.org/10.1111/jfpp.16978

[50] A. Koç y M. Erbaş, “Investigation of sorption isotherms of wheat germ for its effect on lipid oxidation”, J. Food Sci., vol. 87, nro. 5, pp. 2072–2082, 2022. DOI: https://doi.org/10.1111/1750-3841.16133

[51] S. Mallek, N. Bahloul y N. Kechaou, “Mathematical modelling of water sorption isotherms and thermodynamic properties of Cucumis melo L. seeds”, Food Sci. Technol., vol. 131, nro. 109727, 2020. DOI: https://doi.org/10.1016/j.lwt.2020.109727

[52] Y. Sato, Y. Wada y A. Higo, “Relationship between monolayer and multilayer water contents, and involvement in gelatinization of baked starch products”, J. Food Eng., vol. 96, nro. 2, pp. 172–178, 2010. DOI: https://doi.org/10.1016/j.jfoodeng.2009.07.009

[53] R. Silvestre, J. Espinosa, E. Heredia, E. Pérez y S. O. Serna, “Biocatalytic degradation of proteins and starch of extruded whole chickpea flours”, Food Bioprocess Technol., vol. 13, nro. 10, pp. 1703–1716, 2020. DOI: https://doi.org/10.1007/s11947-020-02511-z

[54] R. Silvestre, J. Espinosa, E. Pérez y S. O. Serna, “Extruded chickpea flour sequentially treated with alcalase and α‐amylase produces dry instant beverage powders with enhanced yield and nutritional properties”, Int. J. Food Sci. Technol., vol. 56, nro. 10, pp. 5178–5189, 2021. DOI: https://doi.org/10.1111/ijfs.15199

[55] S. Wang, V. Chelikani y L. Serventi, “Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented”, Food Sci. Technol., vol. 97, pp. 570–572, 2018. DOI: https://doi.org/10.1016/j.lwt.2018.07.067

[56] T. Sigüenza, V. Pando, M. Gómez y J. M. Rodríguez, “Optimization of a simultaneous enzymatic hydrolysis to obtain a high-glucose slurry from bread waste”, Foods, vol. 11, pp. 1–13, 2022. DOI: https://doi.org/10.3390/foods11121793

[57] J. Jaimez, E. Contreras, F. González, L. G. González, J. E. Onofre y J. Ramírez, “Caracterización física y química de Zingiber officinale en diferentes estados de maduración para su uso potencial en la elaboración de bebidas saludables”, Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI, vol. 9, nro. 17, pp. 82–87, 2021. DOI: https://doi.org/10.29057/icbi.v9i17.7153

[58] A. Lovegrove et al., “The contribution of fiber components to water absorption of wheat grown in the UK”, Cereal Chem., vol. 97, nro. 5, pp. 940–948, 2020. DOI: https://doi.org/10.1002/cche.10316

[59] J. Ahmed, A. S. Almusallam, F. Al-Salman, M. H. AbdulRahman y E. Al-Salem, “Rheological properties of water insoluble date fiber incorporated wheat flour dough”, Food Sci. Technol., vol. 51, nro. 2, pp. 409–416, 2013. DOI: https://doi.org/10.1016/j.lwt.2012.11.018

[60] L. Acurio, D. Salazar, M. E. García, P. García-Segovia, J. Martínez-Monzó y M. Igual, “Characterization, mathematical modeling of moisture sorption isotherms and bioactive compounds of Andean root flours”, Curr. Res. Food Sci., vol. 8, pp. 100752, 2024. DOI: https://doi.org/10.1016/j.crfs.2024.100752

[61] M. N. Cahyanti, M. N. Alfiah y S. Hartini, “Sorption isotherm modelling of fermented cassava flour by red yeast rice”, Mater. Sci. Eng., vol. 349, pp. 012038, 2018. DOI: https://doi.org/10.1088/1757-899X/349/1/012038

[62] G. H. de Oliveira, P. C. Corrêa, A. P. de Oliveira, R. C. dos Reis y I. A. Devilla, “Application of GAB model for water desorption isotherms and thermodynamic analysis of sugar beet seeds”, J. Food Process Eng., vol. 40, nro. 1, pp. 1–8, 2017. DOI: https://doi.org/10.1111/jfpe.12278

[63] P. Yogendrarajah, S. Samapundo, F. Devlieghere, S. De Saeger y B. de Meulenaer, “Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.)”, Food Sci. Technol., vol. 64, nro. 1, pp. 177–188, 2015. DOI: https://doi.org/10.1016/j.lwt.2015.05.045

[64] J. Perdomo, A. Cova, A. J. Sandoval, L. García, E. Laredo y A. J. Müller, “Glass transition temperatures and water sorption isotherms of cassava starch”, Carbohydr Polym., vol. 76, nro. 2, pp. 305–313, 2009. DOI: https://doi.org/10.1016/j.carbpol.2008.10.023

[65] S. Samapundo, F. Devlieghere, B. Meulenaer, A. Atukwase, Y. Lamboni y J. M. Debevere, “Sorption isotherms and isosteric heats of sorption of whole yellow dent corn”, J. Food Eng., vol. 79, nro. 1, pp. 168–175, 2007. DOI: https://doi.org/10.1016/j.jfoodeng.2006.01.040

[66] S. S. Kirn y S. R. Bhowmik, “Moisture sorption isotherms of concentrated yogurt and microwave vacuum dried yogurt powder”, J. Food Eng., vol. 21, nro. 2, pp. 157–175, 1994. DOI: https://doi.org/10.1016/0260-8774(94)90184-8

[67] J. Blahovec y S. Yanniotis, “GAB generalized equation for sorption phenomena”, Food Bioprocess Technol., vol. 1, nor. 1, pp. 82–90, 2008. DOI: https://doi.org/10.1007/s11947-007-0012-3

[68] E. O. Timmermann, J. Chirife y H. A. Iglesias, “Water sorption isotherms of foods and foodstuffs: BET or GAB parameters?”, J. Food Eng., vol. 48, nro. 1, pp. 19–31, 2001. DOI: https://doi.org/10.1016/S0260-8774(00)00139-4

[69] P. P. Lewicki, “The applicability of the GAB model to food water sorption isotherms”, Int. J. Food Sci. Technol., vol. 32, nro. 6, pp. 553–557, 1997. DOI: https://doi.org/10.1111/j.1365-2621.1997.tb02131.x

[70] O. J. Oyelade, T. Y. Tunde, J. C. Igbeka, M. O. Oke y O. Y. Raji, “Modelling moisture sorption isotherms for maize flour”, J. Stored Prod. Res., vol. 44, nro. 2, pp. 179–185, 2008. DOI: https://doi.org/10.1016/j.jspr.2007.10.005

[71] E. Duggan, N. Noronha, E. D. O’Riordan y M. O’Sullivan, “Effect of resistant starch on the water binding properties of imitation cheese”, J. Food Eng., vol. 84, nro. 1, pp. 108–115, 2008. DOI: https://doi.org/10.1016/j.jfoodeng.2007.04.028

[72] J. Chirife, E. O. Timmermann, H. A. Iglesias y R. Boquet, “Some features of the parameter k of the GAB equation as applied to sorption isotherms of selected food materials”, J. Food Eng., vol. 15, nro. 1, pp. 75–82, 1992. DOI: https://doi.org/10.1016/0260-8774(92)90041-4

[73] S. Arslan, “Moisture sorption isotherm and thermodynamic analysis of quinoa grains”, Heat Mass Transfer., vol. 57, nro. 3, pp. 543–550, 2021. DOI: https://doi.org/10.1007/s00231-020-02978-8

[74] R. Moreira, F. Chenlo, M. D. Torres y D. M. Prieto, “Water adsorption and desorption isotherms of chestnut and wheat flours”, Ind. Crops Prod., vol. 32, nro. 3, pp. 252–257, 2010. DOI: https://doi.org/10.1016/j.indcrop.2010.04.021

[75] D. Choque et al., “Storage conditions and adsorption thermodynamic properties for purple corn”, Foods, vol. 11, nro. 828, pp. 1–12, 2022. DOI: https://doi.org/10.3390/foods11060828

[76] W. A. M. McMinn y T. R. A. Magee, “Thermodynamic properties of moisture sorption of potato”, J. Food Eng., vol. 60, nro. 2, pp. 157–165, 2003. DOI: https://doi.org/10.1016/S0260-8774(03)00036-0

[77] L. Peixoto, C. C. Ferrari, D. Ito, E. de C. Guerreiro y S. P. Marconi, “Drum drying process of jabuticaba pulp using corn starch as an additive”, Braz. J. Food Technol., vol. 23, pp. e2019166, 2020. DOI: https://doi.org/10.1590/1981-6723.16619

[78] H. Togrul y N. Arslan, “Moisture sorption behaviour and thermodynamic characteristics of rice stored in a chamber under controlled humidity”, Biosyst. Eng., vol. 95, nro. 2, pp. 181–195, 2006. DOI: https://doi.org/10.1016/j.biosystemseng.2006.06.011

[79] P. O. Ngoddy y F. W. Bakker, “A generalized theory of sorption phenomena in biological materials (Part I. The isotherm equation)”, Transactions of the ASAE, vol. 13, nro. 5, pp. 612–617, 1970. DOI: https://doi.org/10.13031/2013.38675

[80] S. Bellagha, A. Sahli y A. Farhat, “Desorption isotherms and isosteric heat of three tunisian date cultivars”, Food Bioprocess Technol., vol. 1, nro. 3, pp. 270–275, 2008. DOI: https://doi.org/10.1007/s11947-007-0006-1

[81] F. Chen, C. Zhou, G. Li y F. Peng, “Thermodynamics and kinetics of glyphosate adsorption on resin D301”, Arabian J. Chem., vol. 9, nro. 2, pp. S1665–S1669, 2016. DOI: https://doi.org/10.1016/j.arabjc.2012.04.014

Cómo citar

IEEE

[1]
R. M. Vegas Niño, L. Marceliano Sánchez, J. V. Polo Quispe, y F. A. García Polo, «Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre», Rev. Colomb. Quim., vol. 54, n.º 1, pp. 17–28, oct. 2025.

ACM

[1]
Vegas Niño, R.M., Marceliano Sánchez, L., Polo Quispe, J.V. y García Polo, F.A. 2025. Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre. Revista Colombiana de Química. 54, 1 (oct. 2025), 17–28. DOI:https://doi.org/10.15446/rev.colomb.quim.v54n1.113962.

ACS

(1)
Vegas Niño, R. M.; Marceliano Sánchez, L.; Polo Quispe, J. V.; García Polo, F. A. Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre. Rev. Colomb. Quim. 2025, 54, 17-28.

APA

Vegas Niño, R. M., Marceliano Sánchez, L., Polo Quispe, J. V. & García Polo, F. A. (2025). Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre. Revista Colombiana de Química, 54(1), 17–28. https://doi.org/10.15446/rev.colomb.quim.v54n1.113962

ABNT

VEGAS NIÑO, R. M.; MARCELIANO SÁNCHEZ, L.; POLO QUISPE, J. V.; GARCÍA POLO, F. A. Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre. Revista Colombiana de Química, [S. l.], v. 54, n. 1, p. 17–28, 2025. DOI: 10.15446/rev.colomb.quim.v54n1.113962. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/113962. Acesso em: 28 dic. 2025.

Chicago

Vegas Niño, Rodolfo Moisés, Lubberto Marceliano Sánchez, Jorge Vicente Polo Quispe, y Fredi Aldair García Polo. 2025. «Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre». Revista Colombiana De Química 54 (1):17-28. https://doi.org/10.15446/rev.colomb.quim.v54n1.113962.

Harvard

Vegas Niño, R. M., Marceliano Sánchez, L., Polo Quispe, J. V. y García Polo, F. A. (2025) «Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre», Revista Colombiana de Química, 54(1), pp. 17–28. doi: 10.15446/rev.colomb.quim.v54n1.113962.

MLA

Vegas Niño, R. M., L. Marceliano Sánchez, J. V. Polo Quispe, y F. A. García Polo. «Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre». Revista Colombiana de Química, vol. 54, n.º 1, octubre de 2025, pp. 17-28, doi:10.15446/rev.colomb.quim.v54n1.113962.

Turabian

Vegas Niño, Rodolfo Moisés, Lubberto Marceliano Sánchez, Jorge Vicente Polo Quispe, y Fredi Aldair García Polo. «Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre». Revista Colombiana de Química 54, no. 1 (octubre 29, 2025): 17–28. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/rcolquim/article/view/113962.

Vancouver

1.
Vegas Niño RM, Marceliano Sánchez L, Polo Quispe JV, García Polo FA. Propiedades de adsorción de humedad y características termodinámicas de harina de tocosh de papa hidrolizada y harina de jengibre. Rev. Colomb. Quim. [Internet]. 29 de octubre de 2025 [citado 28 de diciembre de 2025];54(1):17-28. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/113962

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

114

Descargas

Los datos de descargas todavía no están disponibles.