Publicado
Simulation of electronic structure and excited states of a chlorophyll-A system
Simulación de estructura electrónica y estados excitados del sistema molecular clorofila-A
Simulação da estrutura eletrônica e estados excitados do sistema molecular da clorofila-A
DOI:
https://doi.org/10.15446/rev.colomb.quim.v53n1.116612Palabras clave:
Chlorophyll-A, density functional theory, Optical spectroscopy, electronic structure, atomic nuclei (en)Clorofila-A, teoría funcional de densidad, Espectroscopia óptica, Estructura electrónica, Núcleos atómicos (es)
Clorofila-A, teoria do funcional da densidade, Espectroscopia óptica, Estrutura eletrônica, Núcleos atômicos (pt)
Descargas
A system of six chlorophyll-A molecules (Ch-A-6) was studied by quantum chemical modeling methods using density functional theory and its non-local approximations. Theoretical modeling of the spatial structure, electronic levels, distribution of effective charges on atoms and excited states was carried out simultaneously with interpretation of experimental optical absorption spectra of chlorophyll-A in solution with diethyl ether. Analysis of electronic structure and atomic nuclei by Mulliken methods allowed to establish the nature of the bond between chlorophyll-A molecules within the system. The effect of Mg coordinate position in the formation of bands in calculated absorption spectra was studied. According to the calculations, excited states are caused by transitions from within each chlorophyll fragment. Transitions of mixed molecular orbitals can also be detected. A final analysis of non-covalent interactions showed the presence of a high degree of hydrogen bonds and strong Van der Waals interactions.
Un sistema compuesto por seis moléculas de clorofila-A (Ch-A-6) fue estudiado a partir de métodos de simulación de química cuántica mediante la teoría funcional de la densidad y su aproximación de forma no local. La simulación teórica de la estructura espacial, la configuración electrónica y la distribución de cargas efectivas en átomos y en estados excitados se llevaron a cabo simultáneamente con la interpretación de espectros ópticos de clorofila-A en solución con etoxietano. El análisis de la estructura electrónica y de los núcleos atómicos mediante métodos Mulliken permitió establecer la naturaleza del enlace entre las moléculas de clorofila-A dentro del sistema. Se estudió el efecto de la posición del magnesio (Mg) en espectros de absorción simulados. Según los cálculos, los estados excitados son causados por transiciones dentro de cada fragmento de clorofila. También se detectaron otras transiciones entre orbitales moleculares. El análisis de interacciones no covalentes mostró la presencia de un alto grado de enlaces de hidrógeno y fuertes interacciones de Van der Waals.
Um sistema composto por seis moléculas de clorofila-A (Ch-A-6) foi caracterizado em simulação física quântica usando a teoria do funcional da densidade e sua aproximação não local. A simulação da estrutura espacial, da configuração eletrônica e da distribuição de cargas efetivas nos átomos e nos estados excitados foi realizada simultaneamente, com interpretação dos espectros ópticos da clorofila-A em solução em etoxietano. A análise da estrutura eletrônica e dos núcleos atômicos usando métodos Mulliken permitiu estabelecer a natureza da ligação entre as moléculas de clorofila-A dentro do sistema. O efeito da posição do magnésio (Mg) nos espectros de absorção simulados foi estudado. De acordo com os cálculos, os estados excitados são causados por transições dentro dos fragmentos, outras transições entre orbitais moleculares também foram detectadas. A análise das interações não covalentes mostrou a presença de um alto grau de ligações de hidrogênio e fortes interações de Van der Waals.
Referencias
[1] J. W. Murray, “Photosynthesis: Light and Life”, Biochemist, vol. 35, no. 5, pp. 4−7, 2013. DOI: https://doi.org/10.1042/BIO03505004
[2] A. Constantin, Rebeiz Chlorophyll Biosynthesis and Technological Applications, Springer, 2014.
[3] G. Britton, The biochemistry of natural pigments, Cambridge University Press, 1986.
[4] S. M. Petrovic, J. B. Zvezdanović, T. D. Anđelković and D. Z. Marković, “The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies”, Advanced technologies, vol. 1, pp. 16−24, 2012.
[5] T. van Mourik, M. Bühl and M. P. Gaigeot, “Density functional theory across chemistry, physics and biology”, Phil. Trans. R. Soc. A., vol. 372, 2014. DOI: https://doi.org/10.1098/rsta.2012.0488
[6] A. M. Hussein, Y. H. Zaki, S. A. Elroby and A. M. Hassanien, “Optical spectroscopic and DFT/TD-DFT studies on a new synthesized N, S-containing organic heterocyclic”, Physica E: Low-dimensional Systems and Nanostructures, vol. 153, 2023. DOI: https://doi.org/10.1016/j.physe.2023.115764
[7] M. Vasilescu et al., “Optical spectroscopic characteristics and TD-DFT calculations of new pyrrolo[1,2-b]pyridazine derivatives”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 194, no. 2–3, pp. 308−317, 2008. DOI: https://doi.org/10.1016/j.jphotochem.2007.08.029
[8] V.V. Korochentsev et al., “Electronic structure of guanidine and its derivatives from X-ray photoelectron spectroscopy and density functional theory studies”, Russian Journal of General Chemistry, vol. 84, pp. 25–32, 2014. DOI: https://doi.org/10.1134/S1070363214010071
[9] E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang, “Revealing noncovalent interactions”, Journal of the American Chemical Society, vol. 132, no. 18, pp. 6498–6506, 2010. DOI: https://doi.org/10.1021/ja100936w
[10] V. Ponnuchamy, A. Sandak and J. Sandak, “Multiscale modelling investigation of wood modification with acetic anhydride”, Physical Chemistry Chemical Physics, vol. 22, no. 48, pp. 28448-28458, 2020. DOI: https://doi.org/10.1039/d0cp05165a
[11] M. Medimagh et al., “Investigations on the non-covalent interactions, drug-likeness, molecular docking and chemical properties of 1,1,4,7,7- pentamethyldiethylenetriammonium trinitrate by density-functional theory”, Journal of King Saud University - Science, vol. 35, no. 4, 2024. DOI: https://doi.org/10.1016/j.jksus.2023.102645
[12] A. H. Bakheit, R. Al-Salahi and A. A. Al-Majed, “Thermodynamic and Computational (DFT) Study of Non-Covalent Interaction Mechanisms of Charge Transfer Complex of Linagliptin with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and Chloranilic acid (CHA)”, Molecules, vol. 27, no. 19, 2022. DOI: https://doi.org/10.3390/molecules27196320
[13] A. A. Granovsky, Firefly: computational chemistry program v.8.1, http://classic.chem.msu.su/gran/firefly/index.html
[14] M. W. Schmidt et al., “General Atomic and Molecular Electronic Structure System”, Journal Computational Chemistry, vol. 14, no. 11, pp. 1347−1363, 1993. DOI: https://doi.org/10.1002/jcc.540141112
[15] T. Yanai, D. P. Tew and N. C. Handy, “A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)”, Chemical Physics Letters, vol. 393, no. 1−3, pp. 51−57, 2004. DOI: https://doi.org/10.1016/j.cplett.2004.06.011
[16] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A., vol. 38, no. 6, pp. 3098−3100, 1988. DOI: https://doi.org/10.1103/physreva.38.3098
[17] M. Li, J. R. Reimers, M. J. Ford, R. Kobayashi and R. D. Amos, “Accurate prediction of the properties of materials using the CAM-B3LYP density functional”, Journal of Computational Chemistry, vol. 42, no. 21, pp. 1486–1497, 2021. DOI: https://doi.org/10.1002/jcc.26558
[18] Z. L. Cai, M. J. Crossley, J. R. Reimers, R. Kobayashi and R. D. Amos, “Density Functional Theory for Charge Transfer: The Nature of the N-Bands of Porphyrins and Chlorophylls Revealed through CAM-B3LYP, CASPT2, and SAC-CI Calculations”, The Journal of Physical Chemistry B, vol. 110, pp. 15624–15632, 2006. DOI: https://doi.org/10.1021/jp063376t
[19] R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, “Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions”, J. Chem. Phys., vol. 72, no. 1, pp. 650–654, 1980. DOI: https://doi.org/10.1063/1.438955
[20] N. Gelfand, A. Freidzon, V. Vovna, “Theoretical insights into UV–Vis absorption spectra of difluoroboron β-diketonates with an extended π system: An analysis based on DFT and TD-DFT calculations”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 216, pp. 161−172, 2019. DOI: https://doi.org/10.1016/j.saa.2019.02.064
[21] D- Kröner, J. P. Götze, “Modeling of a violaxanthin–chlorophyll b chromophore pair in its LHCII environment using CAM-B3LYP”, Journal of Photochemistry and Photobiology B: Biology, vol. 109, pp. 12−19, 2012. DOI: https://doi.org/10.1016/j.jphotobiol.2011.12.007
[22] M. A. Kavanagh, J. K. G. Karlsson, J. D. Colburn, L. M. C. Barter and I. R. Gould, “A TDDFT investigation of the Photosystem II reaction center: Insights into the precursors to charge separation”, Proceedings of the National Academy of Sciences, vol. 117, no. 33, pp. 19705−1971, 2020. DOI: https://doi.org/10.1073/pnas.1922158117
[23] G. Saleh, C. Gatti and L. Lo Presti, “Non-covalent interaction via the reduced density gradient: Independent atom model vs experimental multipolar electron densities”, Computational and Theoretical Chemistry, vol. 998, pp. 148−163, 2012. DOI: https://doi.org/10.1016/j.comptc.2012.07.014
[24] T. Lu, F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer”, Journal of Computational Chemistry, vol. 33, pp. 580−592, 2012. DOI: https://doi.org/10.1002/jcc.22885
[25] G. R. Seely and J. S. Connolly, “Fluorescence of photosynthetic pigments in vitro”, in Light emission by plants and bacteria, Academic Press, pp. 99−133, 1986.
[26] S. Jacquemoud and S. Ustin, Spectroscopy of Leaf Molecules. In Leaf Optical Properties, Cambridge University Press, 2019.
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Daniel Alejandro Rivas Velasquez, Anton Shurygin Vladimirovich
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC. Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).