Detection and Characterization of Halogen Bonds by UV-Vis Spectrophotometry and Molecular Modelling
Detección y caracterización de enlaces halógenos por medio de espectrofotometría UV-Vis y modelado molecular
Detecção e caracterização de ligações halógenas através de espectrofotometria UV-Vis e modelagem molecular
DOI:
https://doi.org/10.15446/rev.colomb.quim.v53n2.116648Palabras clave:
Halogen bonds, UV-Vis spectrophotometry, molecular modelling, electronic transitions (en)ligações de halogéneo, espectrofotometria UV-Vis, modelagem molecular, transições eletrônicas (pt)
enlaces de halógeno, espectrofotometría UV-Vis, modelado molecular, transiciones electrónicas (es)
Descargas
This study investigates halogen bonds (XBs) in bromine-acetone complexes (Br₂···Ac) using UV-Vis spectrophotometry and computational methods. Electronic structure calculations, including geometry optimizations and excited-state calculations, were carried out using the Gaussian 16 program. Time-Dependent Density Functional Theory (TD-DFT) method, with the M06-2X functional and def2-TZVP basis set, was employed to determine absorption energies corresponding to HOMO→LUMO transitions. Acetone solvation was simulated using the Polarizable Continuum Model (PCM). Experimental UV-Vis spectra of gaseous Br₂ revealed two absorption peaks at 238 nm (λ1,exp) and 454 nm (λ2,exp). Upon dissolution in acetone, λ2,exp underwent a hypsochromic (blue) shift, reaching 395 nm and 365 nm at 0.04 and 0.01 M Br2, respectively. This shift is attributed to XB formation, supported by theoretical spectra showing peaks at 390 nm (Br2···Ac) and 360 nm (Ac···Br2···Ac). The 238 nm peak in Br2(g) is associated with Br2···Br2 complexes, corroborated by a theoretical peak at 240 nm. A single peak at 415 nm in Br2(g) diluted in air is attributed to Br2···N2 complexes, with a corresponding theoretical peak at 417 nm. Theoretical and experimental data align well, validating the methodology and highlighting the role of XBs and electronic transitions in modulating Br2 spectrophotometric properties.
Este estudio analiza los enlaces de halógeno (XBs) en complejos de bromo y acetona (Br2···Ac) mediante espectrofotometría UV-Vis y métodos computacionales. Se realizaron cálculos de estructura electrónica, optimización geométrica y estados excitados con el programa Gaussian 16. Se empleó el método de la teoría del funcional de la densidad dependiente del tiempo (TD-DFT), con el funcional M06-2X y la base def2-TZVP, para calcular energías de absorción correspondientes a transiciones HOMO→LUMO. La solvatación en acetona se simuló usando el Modelo de Continuo Polarizable (PCM). Los espectros UV-Vis experimentales de Br2 gaseoso mostraron picos de absorción a 238 nm (λ1,exp) y 454 nm (λ2,exp). Al disolverse en acetona, λ2,exp presentó un corrimiento hipsoacrómico que se observó a 395 y 365 nm para concentraciones de 0,04 y 0,01 M, respectivamente. Este cambio se atribuye a la formación de XBs, respaldado por espectros teóricos con picos a 390 nm (Br2···Ac) y 360 nm (Ac···Br2···Ac). El pico a 238 nm se asocia con complejos Br2···Br2, confirmado teóricamente a 240 nm. Un único pico a 415 nm en Br2 diluido en aire se atribuye a complejos Br2···N2, con pico teórico a 417 nm. La concordancia entre datos teóricos y experimentales valida la metodología y destaca el papel de los XBs en las propiedades espectrofotométricas del Br2.
Este estudo investiga as ligações de halogênio (XBs) em complexos de bromo e acetona (Br2···Ac) por meio de espectrofotometria UV-Vis e métodos computacionais. Realizaram-se cálculos de estrutura eletrônica, otimizações geométricas e estados excitados com o programa Gaussian 16. O método da teoria funcional da densidade dependente do tempo (TD-DFT) foi empregado, com o funcional M06-2X e o conjunto de base def2-TZVP, para calcular as energias de absorção correspondentes às transições HOMO→LUMO. A solvação em acetona foi simulada com o Modelo de Continuum Polarizável (PCM). Os espectros UV-Vis experimentais de Br2 gasoso revelaram picos de absorção em 238 nm (λ1,exp) e 454 nm (λ2,exp). Ao ser dissolvido em acetona, λ2,exp apresentou um deslocamento hipsoacrômico, observando-se em 395 e 365 nm para concentrações de 0,04 e 0,01 M, respectivamente. Esse deslocamento é atribuído à formação de XBs, sustentada por espectros teóricos com picos em 390 nm (Br2···Ac) e 360 nm (Ac···Br2···Ac). O pico em 238 nm está relacionado a complexos Br2···Br2, confirmado por cálculo teórico em 240 nm. Um único pico em 415 nm para Br2 diluído em ar é atribuído a complexos Br2···N2, com pico teórico em 417 nm. Os dados teóricos e experimentais mostram boa concordância, validando a metodologia e destacando o papel dos XBs nas propriedades espectrofotométricas do Br2.
Referencias
[1] G. Cavallo et al., “The halogen bond,” Chem Rev, vol. 116, no. 4, pp. 2478–2601, 2016. DOI: https://doi.org/10.1021/acs.chemrev.5b00484.
[2] P. Politzer, P. Lane, M. C. Concha, Y. Ma, and J. S. Murray, “An overview of halogen bonding,” J Mol Model, vol. 13, pp. 305–311, 2007.
[3] H. Yang and M. W. Wong, “Application of halogen bonding to organocatalysis: A theoretical perspective,” Molecules, vol. 25, no. 5, p. 1045, 2020.
[4] P. Metrangolo and G. Resnati, “Halogen bonding: a paradigm in supramolecular chemistry,” Chemistry–a European journal, vol. 7, no. 12, pp. 2511–2519, 2001. DOI: https://doi.org/10.1002/1521-3765(20010618)7:12
[5] P. Metrangolo, H. Neukirch, T. Pilati, and G. Resnati, “Halogen bonding based recognition processes: a world parallel to hydrogen bonding,” Acc Chem Res, vol. 38, no. 5, pp. 386–395, 2005. DOI: https://doi.org/10.1021/ar0400995.
[6] O. Hassel, K. O. Strømme, E. Stenhagen, G. Andersson, E. Stenhagen, and H. Palmstierna, “Crystal structure of the 1:1 addition compound formed by acetone and bromine,” Acta Chem. Scand, vol. 13, no. 2, pp. 275–280, 1959. DOI: https://doi.org/10.3891/acta.chem.scand.13-0275.
[7] L. P. Wolters, P. Schyman, M. J. Pavan, W. L. Jorgensen, F. M. Bickelhaupt, and S. Kozuch, “The many faces of halogen bonding: A review of theoretical models and methods,” Wiley Interdiscip Rev Comput Mol Sci, vol. 4, no. 6, pp. 523–540, 2014. DOI: https://doi.org/10.1002/wcms.1189.
[8] P. Politzer, J. S. Murray, and T. Clark, “Halogen bonding and other σ-hole interactions: A perspective,” Physical Chemistry Chemical Physics, vol. 15, no. 27, pp. 11178–11189, 2013. DOI: https://doi.org/10.1039/c3cp00054k.
[9] K. Eskandari and H. Zariny, “Halogen bonding: A lump–hole interaction,” Chem Phys Lett, vol. 492, no. 1–3, pp. 9–13, 2010. DOI: https://doi.org/10.1016/j.cplett.2010.04.021.
[10] D. J. R. Duarte, E. L. Angelina, and N. M. Peruchena, “On the strength of the halogen bonds: mutual penetration, atomic quadrupole moment and Laplacian distribution of the charge density analyses,” Comput Theor Chem, vol. 998, pp. 164–172, 2012. DOI: https://doi.org/10.1016/j.comptc.2012.07.019.
[11] E. Bartashevich and V. Tsirelson, “A comparative view on the potential acting on an electron in a molecule and the electrostatic potential through the typical halogen bonds,” J Comput Chem, vol. 39, no. 10, pp. 573–580, 2018. DOI: https://doi.org/10.1002/jcc.25112.
[12] D. J. R. Duarte, G. J. Buralli, and N. M. Peruchena, “Is σ-hole an electronic exchange channel in YX⋯ CO interactions?,” Chem Phys Lett, vol. 710, pp. 113–117, 2018. DOI: https://doi.org/10.1016/j.cplett.2018.08.060.
[13] G. R. Desiraju et al., “Definition of the halogen bond (IUPAC Recommendations 2013),” Pure and applied chemistry, vol. 85, no. 8, pp. 1711–1713, 2013. DOI: https://doi.org/10.1351/PAC-REC-12-05-10.
[14] R. Shi, D. Yu, F. Zhou, J. Yu, and T. Mu, “An emerging deep eutectic solvent based on halogen-bonds,” Chemical Communications, vol. 58, no. 29, pp. 4607–4610, 2022. https://doi.org/10.1039/D2CC00745J.
[15] P. Gogoi, U. Mohan, M. P. Borpuzari, A. Boruah, and S. K. Baruah, “UV-Visible spectroscopy and density functional study of solvent effect on halogen bonded charge-transfer complex of 2-Chloropyridine and iodine monochloride,” Arabian Journal of Chemistry, vol. 12, no. 8, pp. 4522–4532, 2019. DOI: https://doi.org/10.1016/j.arabjc.2016.07.011.
[16] A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint,” Chem Rev, vol. 88, no. 6, pp. 899–926, 1988. DOI: https://doi.org/10.1021/cr00088a005.
[17] X. Xu and Y. Guan, “Investigating the complexation and release behaviors of iodine in Poly (vinylpyrrolidone)-Iodine systems through experimental and computational approaches,” Ind Eng Chem Res, vol. 59, no. 52, pp. 22667–22676, 2020. DOI: https://doi.org/10.1021/acs.iecr.0c04766.
[18] B. M. Powell, K. M. Heal, and B. H. Torrie, “The temperature dependence of the crystal structures of the solid halogens, bromine and chlorine,” Mol Phys, vol. 53, no. 4, pp. 929–939, 1984. DOI: https://doi.org/10.1080/00268978400102741.
[19] R. H. Jones, K. S. Knight, W. G. Marshall, S. J. Coles, P. N. Horton, and M. B. Pitak, “The competition between halogen bonds (Br center dot center dot center dot O) and CH center dot center dot center dot O hydrogen bonds: the structure of the acetone-bromine complex revisited,” CrystEngComm, vol. 15, no. 42, pp. 8572–8577, 2013. DOI: https://doi.org/10.1039/c3ce41472h.
[20] D. L. Perry, Handbook of inorganic compounds. CRC press, 2016.
[21] M. J. Frisch et al., “Gaussian˜16 Revision C.01,” 2016.
[22] Y. Zhao and D. G. Truhlar, “The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals,” Theor Chem Acc, vol. 120, no. 1, pp. 215–241, 2008. DOI: https://doi.org/10.1007/s00214-007-0310-x.
[23] J.-D. Chai and M. Head-Gordon, “Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections,” Physical Chemistry Chemical Physics, vol. 10, no. 44, pp. 6615–6620, 2008. DOI: https://doi.org/10.1039/B810189B.
[24] W. Kohn, A. D. Becke, and R. G. Parr, “Density functional theory of electronic structure,” J Phys Chem, vol. 100, no. 31, pp. 12974–12980, 1996. DOI: https://doi.org/10.1021/jp960669l.
[25] B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, “New basis set exchange: An open, up-to-date resource for the molecular sciences community,” J Chem Inf Model, vol. 59, no. 11, pp. 4814–4820, 2019. DOI: https://doi.org/10.1021/acs.jcim.9b00725.
[26] E. Cancès, B. Mennucci, and J. Tomasi, “A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics,” J Chem Phys, vol. 107, no. 8, pp. 3032–3041, 1997. DOI: https://doi.org/10.1063/1.474659.
[27] J. Tomasi, B. Mennucci, and R. Cammi, “Quantum mechanical continuum solvation models,” Chem Rev, vol. 105, no. 8, pp. 2999–3094, 2005. DOI: https://doi.org/10.1021/cr9904009.
[28] F. Richard and R. Bader, “Atoms in molecules: a quantum theory,” 1990, Oxford University Press, Oxford.
[29] Á. M. Pendás and C. Gatti, “Quantum theory of atoms in molecules and the AIMAll software,” Complement. Bond. Anal, vol. 43, 2021.
[30] A. van Bondi, “van der Waals Volumes and Radii,” J Phys Chem, vol. 68, no. 3, pp. 441–451, 1964. DOI: https://doi.org/10.1021/j100785a001.
[31] D. J. R. Duarte, G. L. Sosa, N. M. Peruchena, and I. Alkorta, “Halogen bonding. The role of the polarizability of the electron-pair donor,” Physical Chemistry Chemical Physics, vol. 18, no. 10, pp. 7300–7309, 2016.
[32] G. J. Buralli, D. J. R. Duarte, G. L. Sosa, and N. M. Peruchena, “Lewis acid-base behavior of hypervalent halogen fluorides in gas phase,” Struct Chem, vol. 28, pp. 1823–1830, 2017. DOI: https://doi.org/10.1007/s11224-017-0973-5.
[33] S. J. Grabowski, “Halogen bonds with carbenes acting as Lewis base units: complexes of imidazol-2-ylidene: theoretical analysis and experimental evidence,” Physical Chemistry Chemical Physics, vol. 25, no. 13, pp. 9636–9647, 2023. DOI: https://doi.org/10.1039/D2CP05046K.
[34] P. R. Varadwaj, “Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist?,” Int J Mol Sci, vol. 25, no. 9, p. 4587, 2024. DOI: https://doi.org/10.3390/ijms25094587.
[35] R. F. W. Bader, P. L. A. Popelier, and C. Chang, “Similarity and complementarity in chemistry,” Journal of Molecular Structure: THEOCHEM, vol. 255, pp. 145–171, 1992. DOI: https://doi.org/10.1016/0166-1280(92)85008-4.
[36] S. Hubinger and J. B. Nee, “Absorption spectra of Cl2, Br2 and BrCl between 190 and 600 nm,” J Photochem Photobiol A Chem, vol. 86, no. 1–3, pp. 1–7, 1995. DOI: https://doi.org/10.1016/1010-6030(94)03947-F.
[37] V. G. Nenajdenko et al., “Structural organization of dibromodiazadienes in the crystal and identification of Br··· O halogen bonding involving the nitro group,” Molecules, vol. 27, no. 16, p. 5110, 2022. DOI: https://doi.org/10.3390/molecules27165110.
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Darío Jorge Roberto Duarte, Carlos Alberto Galarza, Matias Orlando Miranda

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC. Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
