Acoplamiento molecular entre fármacos para Alzheimer y la enzima γ-secretasa.
Molecular Docking between Alzheimer's Drugs and γ-secretase Enzyme
Acoplamento molecular entre medicamentos para Alzheimer e a enzima γ-secretase
DOI:
https://doi.org/10.15446/rev.colomb.quim.v53n2.117655Palabras clave:
acoplamiento molecular, diseño de fármacos, enfermedad de Alzheimer, y-secretasa, presenilina 1 (es)Molecular docking, drug design, Alzheimer's disease, γ-secretase, presenilin 1 (en)
acoplamento molecular, concepção de medicamentos, doença de Alzheimer, γ-secretase, presenilin 1 (pt)
Descargas
La enfermedad de Alzheimer (EA) es la forma más común de demencia y consiste en un deterioro cognitivo y conductual que afecta principalmente a los adultos mayores. Se estima que, en los próximos 30 años, 115 millones de personas en todo el mundo estarán afectadas por esta enfermedad. Ante el aumento previsto de casos, los investigadores están buscando alternativas para controlar la EA. Un enfoque importante es el estudio de la proteína γ-secretasa, relacionada con la neurotoxicidad de los péptidos involucrados en la cascada amiloide, una vía bioquímica fundamental en el desarrollo de la EA.
En este trabajo se realizaron estudios in silico con los fármacos JNJ-40418677, GSM-1, bexaroteno y trodusquemina para evaluar su eficacia como moduladores del sitio activo de la subunidad catalítica presenilina 1 (PSEN-1), que forma parte del complejo γ-secretasa. Según los valores de energía de afinidad obtenidos en el acoplamiento molecular, JNJ-40418677 fue identificado como el compuesto con mayor potencial de unión a PSEN-1, seguido de trodusquemina, bexaroteno y GSM-1. Los resultados obtenidos aportan información relevante sobre las características químicas y físicas básicas que deberán ser consideradas en el diseño de moléculas con potencial inhibitorio sobre la γ-secretasa que, como consecuencia, tendrían implicaciones en el tratamiento de la EA.
Alzheimer's disease (AD) is the most common form of dementia, characterized by cognitive and behavioral decline, and primarily affects older adults. It is estimated that worldwide, 115 million people will be affected by the disease in the next 30 years. Given the anticipated increase in cases, researchers are exploring various alternatives to control AD. One area of focus is the study of the γ-secretase protein, which is linked to peptide neurotoxicity involved in the amyloid cascade, a key biochemical pathway in the development of AD.
In this study, in silico studies were conducted with the drugs JNJ-40418677, GSM-1, bexarotene, and trodusquemine to evaluate their efficacy as modulators of the active site of the presenilin catalytic subunit 1 (PSEN-1), which is part of the γ-secretase complex. According to the affinity energy values obtained from molecular docking, JNJ-40418677 was identified as the compound with the greatest binding potential to PSEN-1, followed by trodusquemine, bexarotene, and GSM-1. The results obtained provide relevant information on the basic chemical and physical characteristics that should be considered in the design of molecules with inhibitory potential on γ-secretase, which, as a result, would have implications for the treatment of AD.
A doença de Alzheimer (DA) é a forma mais comum de demência e consiste em comprometimento cognitivo e comportamental, que afeta principalmente adultos mais velhos. Estima-se que, nos próximos 30 anos, 115 milhões de pessoas em todo o mundo serão impactadas pela doença. Diante do aumento previsto de casos, pesquisadores estão investigando diversas alternativas para o controle da DA. Um dos focos de estudo é a proteína γ-secretase, associada à neurotoxicidade dos peptídeos envolvidos na cascata amiloide, uma via bioquímica crucial para o desenvolvimento da DA.
Neste estudo, realizamos análises in silico com os medicamentos JNJ-40418677, GSM-1, bexaroteno e trodusquemina, visando avaliar sua eficácia como moduladores do sítio ativo da subunidade catalítica presenilina 1 (PSEN-1), parte do complexo γ-secretase. De acordo com os valores de energia de afinidade obtidos na metodologia de acoplamento molecular, o fármaco JNJ-40418677 foi identificado como o que apresenta o maior potencial de ligação com a subunidade PSEN-1, seguido pela trodusquemina, bexaroteno e GSM-1. Os resultados obtidos fornecem informações relevantes sobre os primeiros passos no design de moléculas com potencial inibitório sobre a γ-secretase o que, como consequência, teriam implicações no tratamento da EA.
Referencias
[1] P. Scheltens et al. “Alzheimer's disease”, Lancet., vol. 397, pp. 1577−1590, 2021. DOI: https://doi.org/10.1016/S0140-6736(20)32205-4
[2] G. B. Frisoni et al. “The probabilistic model of Alzheimer disease: the amyloid hypothesis revised”, Nat. Rev. Neurosci., vol. 23, pp. 53–66, 2022. DOI: https://doi.org/10.1038/s41583-021-00533-w
[3] X. Zhang et al. “Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies”, Transl. Neurodegener, vol. 13, pp. 40, 2024. DOI: https://doi.org/10.1186/s40035-024-00429-6
[4] A. D. Alonso et al. “Hyperphosphorylation of Tau Associates With Changes in Its Function Beyond Microtubule Stability”, Front. Cell. Neurosci., vol. 12, nro. 338. DOI: https://doi.org/10.3389/fncel.2018.00338
[5] S. Y. Hung y W. M. Fu, “Drug candidates in clinical trials for Alzheimer’s disease”, J. Biomed. Sci., vol. 24, nro. 47, 2017. DOI: https://doi.org/10.1186/s12929-017-0355-7
[6] G. Plascencia-Villa y G. Perry, “Chapter 16 - Lessons from antiamyloid-β immunotherapies in Alzheimer's disease”, Handbook of Clinical Neurology, vol. 193, pp 267−291, 2023. DOI: https://doi.org/10.1016/B978-0-323-85555-6.00019-9
[7] H. Okazawa, “Ultra-Early Phase pathologies of Alzheimer’s disease and other neurodegenerative diseases”, Proc. Jpn. Acad., Ser. B, vol. 93, nro. 6, pp. 361−377, 2017. DOI: https://dx.doi.org/10.2183/pjab.93.022
[8] S.Y. Chen y M. Zacharias, “An internal docking site stabilizes substrate binding to γ-secretase: Analysis by molecular dynamics simulations”, Biophys. J., vol 121, nro. 12, pp. 2330−2344, 2022. DOI: https://doi.org/10.1016/j.bpj.2022.05.023
[9] P. C. Sánchez, “Regulación de la Gamma-Secretasa en la enfermedad de Alzheimer”, Cuadernos del Tomás, nro. 9, pp. 97−105, 2017.
[10] K. Strömberg et al. “Combining an amyloid-beta (Aβ) cleaving enzyme inhibitor with a γ-secretase modulator results in an additive reduction of Aβ production”, FEBS J, vol. 282, pp. 65−73, 2015. DOI: https://doi.org/10.1111/febs.13103
[11] P. Cruz-Vicente, L. A. Passarinha, S. Silvestre y E. Gallardo, “Recent Developments in New Therapeutic Agents against Alzheimer and Parkinson Diseases: In-Silico Approaches”, Molecules, vol. 26, pp. 2193, 2021. DOI: https://doi.org/10.3390/molecules26082193
[12] G. F. Ramírez-Reyes, “Estrategias en el diseño de fármacos”, tesis de pregrado, Universidad de la Laguna, San Cristóbal de la Laguna, España, 2019.
[13] S. Forli et al., “Computational protein–ligand docking and virtual drug screening with the AutoDock suite”, Nat. Protoc., vol. 11, nro. 5, pp. 905, 2016. DOI: https://doi.org/10.1038/nprot.2016.051
[14] H. J. Gijsen y M. Mercken, “γ-Secretase Modulators: Can We Combine Potency with Safety?”, Int. J. Alzheimer’s Dis., vol. 2012, pp. 1−10, 2012. DOI: https://doi.org/10.1155/2012/295207
[15] F. Kamp et al., “Binding of Bexarotene to the Amyloid Precursor Protein Transmembrane Domain in Liposomes Alters its α-Helical Conformation but Inhibits γ-Secretase Non-Selectively”, ACS Chem Neurosci, vol. 9, nro. 7, pp. 1702, 2018. DOI: https://doi.org/10.1021/acschemneuro.8b00068
[16] K. M. Ricke et al., “Neuronal Protein Tyrosine Phosphatase 1B hastens Amyloid β-associated Alzheimer's disease in mice”, J. Neurosci., vol. 40, nro. 7, pp. 1581−1593, 2020. DOI: https://doi.org/10.1523/JNEUROSCI.2120-19.2019
[17] S. Mekala, G. Nelson y Y. M. Li, “Recent developments of small molecule γ-secretase modulators for Alzheimer's disease”, RSC Med. Chem., vol. 11, pp. 1003−1022, 2022. DOI: https://doi.org/10.1039/D0MD00196A
[18] B. Tousi, “The emerging role of bexarotene in the treatment of Alzheimer's disease: current evidence”, Neuropsychiatr. Dis. Treat. vol. 11, pp. 311−315, 2015. DOI: https://doi.org/10.2147/NDT.S61309
[19] R. Limbocker et al. “Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes”, Nat. Commun., vol. 10, nro. 1, pp. 225. 2019. DOI: https://doi.org/10.1038/s41467-018-07699-5
[20] J.Y. Hur, “γ-Secretase in Alzheimer's disease”, Exp. Mol. Med., vol. 54, nro. 4, pp. 433−446, 2022. DOI: https://doi.org/10.1038/s12276-022-00754-8
[21] H. M., Berman et al., “The protein data bank”, Nucleic Acids Res., vol. 28, nro. 1, pp. 235−242, 2000. DOI: https://doi.org/10.1093/nar/28.1.235
[22] X. C. Bai et al., “An atomic structure of human γ-secretase”, Nature, vol. 525, nro. 7568, pp. 212−217, 2015. DOI: https://doi.org/10.1038/nature14892
[23] E. F. Pettersen et al., “UCSF Chimera--a visualization system for exploratory research and analysis”, J. Comput. Chem., vol. 25, nro. 13, pp. 1605−12, 2004. DOI: https://doi.org/10.1002/jcc.20084
[24] G. M. Morris et al., “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility”, J. Comput. Chem., vol. 30, nro. 16, pp. 2785−2791, 2009. DOI: https://doi.org/10.1002/jcc.21256
[25] A. Hall y T. R. Patel, “γ-Secretase modulators: current status and future directions”, Progress in medicinal chemistry, vol. 53, nro. 1, pp. 101−145, 2014. DOI: https://doi.org/10.1016/B978-0-444-63380-4.00003-2
[26] J. O. Daiss et al., “Crystal Structure Analysis, and Pharmacological Characterization of Disila-bexarotene, a Disila-Analogue of the RXR-Selective Retinoid Agonist Bexarotene”, Organometallics, vol. 24, nro. 13, pp. 3192, 2005. DOI: https://doi.org/10.1021/om040143k
[27] ACD/ChemSketch, version 2020.1.2, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com, 2021.
[28] Gaussian 09, Revision A.O2. Gaussian, Inc., Wallingford CT, 2016.
[29] R. M. Page et al., “β-Amyloid precursor protein mutants respond to γ-secretase modulators”, J. Biol. Chem., vol. 285, nro. 23, pp. 17798−17810, 2010. DOI: https://doi.org/10.1074/jbc.M110.103283
[30] W. R. Zhuang et al., “Applications of π-π stacking interactions in the design of drug-delivery systems”, J. Controlled Release, vol. 294, nro. 28, pp. 311−326, 2019. DOI: https://doi.org/10.1016/j.jconrel.2018.12.014
[31] R. Fährrolfes et al., “Proteins Plus: a web portal for structure analysis of macromolecules”, Nucleic Acids Res., vol. 45, nro. 1, pp. 337−343, 2017. DOI: https://doi.org/10.1093/nar/gkx333
[32] O. Trott y A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, J. Comput. Chem., vol. 31, nro. 2, pp. 455−461, 2010. DOI: https://doi.org/10.1002/jcc.21334
[33] Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, (Versión 20.1.0.19295), Windows, San Diego: Dassault Systèmes, 2016. Disponible en https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/
[34] T. Jumpertz et al., “Presenilin is the molecular target of acidic γ-secretase modulators in living cells”, PLoS One, vol. 7, nro. 1, pp. e30484, 2012. DOI: https://doi.org/10.1371/journal.pone.0030484
[35] S. Jr. Bailey y C. A. Bailey, Química Orgánica: Conceptos y Aplicaciones, Ciudad de México, México, Pearson Educación, 2001.
[36] T. E. Golde, E. H. Koo, K. M. Felsenstein, B. A. Osborne y L. Miele, “γ-Secretase inhibitors and modulators”, Biochim. Biophys. Acta, Biomembr., vol. 1828, nro. 12, pp. 2898−2907, 2013. DOI: https://doi.org/10.1016/j.bbamem.2013.06.005
[37] B. Van Broeck et al., “ Chronic treatment with a novel γ‐secretase modulator, JNJ‐40418677, inhibits amyloid plaque formation in a mouse model of Alzheimer's disease”, Br. J. Pharmacol., vol. 163, nro. 2, pp. 375−389, 2011. DOI: https://doi.org/10.1111/j.1476-5381.2011.01207.x
[38] J. Karty, Organic Chemistry: Principles and Mechanisms, Nueva York, EUA, WW Norton Company, 2018.
[39] J. M. Berg et al., Biochemistry: student companion, Nueva York, Macmillan, 2011.
[40] H. Bisswanger, Enzyme kinetics: principles and methods, Weinheim, Alemania, John Wiley & Sons, 2017. DOI: https://doi.org/10.1002/9783527806461
[41] J. Habchi et al., “Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer’s disease”, Proc. Nat. Acad. Sci. U.S.A, vol. 114, nro. 23, 2017. DOI: https://doi.org/10.1073/pnas.1615613114
[42] S. Wajid, S. Khowal y S. Chandra, “In-silico scrutiny and molecular docking analysis for beta secretase-1 and presenilin-1”, Int. J. Pharm. Bio. Sci., vol. 5, nro. 4, pp. 274−292, 2014.
[43] Z. Mirza y M. Amin Beg, “Possible molecular interactions of bexarotene-a retinoid drug and Alzheimer's Aβ peptide: A docking study”, Curr. Alzheimer Res., vol. 14, nro. 43, pp. 327−334, 2017. DOI: https://doi.org/10.2174/1567205013666161114115344
[44] Y. Ohki et al., “Phenylpiperidine-type γ-secretase modulators target the transmembrane domain 1 of presenilin 1”, EMBO J., vol. 30, nro. 23, pp. 4815–4824, 2011. DOI: https://doi.org/10.1038/emboj.2011.372
[45] J. Pérez-Tur, “Presenilinas en la génesis de la enfermedad de Alzheimer”, Rev. Neurol., vol. 33, pp. 967−72, 2001. DOI: https://doi.org/10.33588/rn.3310.2001397
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Ana Paola Jara y Rivera, Andrea Moreno Ceballos, María Eugenia Castro, Francisco J. Melendez, Norma A. Caballero

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons (CC. Atribución 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación en esta revista.
Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
