Publicado

2025-10-29

Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica

Multicriteria Analysis for Selecting Synthetic Fuels Derived from Geothermal Energy in Costa Rica

Estudo multicritério para seleção de combustíveis sintéticos provenientes de energia geotérmica na Costa Rica

DOI:

https://doi.org/10.15446/rev.colomb.quim.v54n1.118304

Palabras clave:

Metanol, Metano, Amoníaco, Electrólisis, Captura de CO2, Hidrógeno verde (es)
Methanol, Methane, Ammonia, Electrolysis, CO2 capture, Green Hydrogen (en)
Metanol, Metano, Amônia, Eletrólise, Captura de CO2, Hidrogênio verde (pt)

Descargas

Autores/as

La llegada de una economía global basada en energías renovables y la adopción del hidrógeno verde (H2V) como vector energético se han visto retrasadas constantemente. Aunque existe un amplio espectro de aplicaciones para el H2V, la mayoría de las tecnologías que lo producen o emplean como combustible son costosas o con baja madurez, lo cual ha limitado el crecimiento del mercado. En este contexto, los combustibles sintéticos se sitúan como una alternativa interesante ya que, aparte de ser carbono-neutrales, permiten continuar utilizando mucha de la infraestructura existente para producción, transporte y consumo final de combustibles. Por ello, en este estudio multicriterio, nos enfocamos en comparar las posibles rutas para producir los combustibles sintéticos más atractivos, metano, metanol y amoníaco, a partir de energía geotérmica en el contexto costarricense. Los resultados presentan al metanol como la mejor opción ya que permite aprovechar el CO2 volcánico. En el contexto latinoamericano, los combustibles sintéticos podrían llegar a tener un rol fundamental para descarbonizar la economía y promover la innovación. Por esta razón, este estudio puede servir de base para realizar estudios similares en la región.

The arrival of a global economy based on renewable energy and the adoption of green hydrogen (H2V) as an energy carrier have been consistently delayed. Although there is a wide range of applications for H2V, most of the technologies that produce or use H2V as fuel are expensive or have low maturity, which has limited market growth. In this context, synthetic fuels are positioned as an interesting alternative because they are carbon-neutral and allow the continued use of much of the existing infrastructure for fuel production, transportation, and consumption. Therefore, in this multicriteria study, we focused on comparing potential routes for producing the most attractive synthetic fuels –methane, methanol, and ammonia– from geothermal energy in the Costa Rican context. The results show that methanol is the best option because it enables the harnessing of volcanic CO2. In the Latin American context, synthetic fuels could play a fundamental role in decarbonizing the economy and promoting innovation. For this reason, this study can serve as a basis for similar studies in the region.

A chegada de uma economia global baseada em energias renováveis ​​e a adoção do hidrogênio verde (H2V) como fonte de energia têm sido constantemente adiadas. Embora haja uma ampla gama de aplicações para o H2V, a maioria das tecnologias que o produzem ou o utilizam como combustível são caras ou têm baixa maturidade, o que limita o crescimento do mercado. Nesse contexto, os combustíveis sintéticos se posicionam como uma alternativa interessante, pois, além de serem neutros em carbono, permitem o uso contínuo de grande parte da infraestrutura existente para produção, transporte e consumo final de combustíveis. Portanto, neste estudo multicritério, focamos na comparação de rotas potenciais para a produção dos combustíveis sintéticos mais atrativos, metano, metanol e amônia, a partir da energia geotérmica no contexto da Costa Rica. Os resultados apontam o metanol como a melhor opção, pois permite o aproveitamento do COvulcânico. No contexto latino-americano, os combustíveis sintéticos podem desempenhar um papel fundamental na descarbonização da economia e na promoção da inovação. Por isso, este estudo pode servir de base para estudos semelhantes na região.

Referencias

[1] I. International Energy Agency, “World Energy Outlook 2023”, 2023. [En línea]. Disponible en: https://www.iea.org/terms.

[2] IEA, “CO2 Emissions in 2022,” 2022. [En línea]. Disponible en: https://www.iea.org.

[3] C. Saget, A. Vogt-Schilb y T. Luu, El empleo en un futuro de cero emisiones netas en America Latina y el Caribe, Washington D.C. y Ginebra, 2020. DOI: https://doi.org/10.18235/0002509.

[4] European Commission, Directorate-General for International Cooperation and Development, Progress on climate action in Latin America: nationally determined contributions as of 2019, 2019. [En línea]. Disponible en: https://data.europa.eu/doi/10.2841/318319.

[5] R. K. Pachauri et al., Cambio climático 2014 Informe de síntesis Informe del grupo intergubarnamental de expertos sobre el cambio climático, 2024. [En línea]. Disponible en: http://www.ipcc.ch.

[6] Intergovernmental Panel on Climate Change, “Climate change 2022 Mitigation of climate change”, 2022. [En línea]. Disponible en: https://www.ipcc.ch/report/ar6/wg3/. [Último acceso: 18/07/2024].

[7] A. G. Olabi y M. A. Abdelkareem, “Renewable energy and climate change”, Renewable and Sustainable Energy Reviews, vol. 158, p. 112111, 2022. DOI: https://www.doi.org/10.1016/J.RSER.2022.112111.

[8] S. R. Sinsel, R. L. Riemke y V. H. Hoffmann, “Challenges and solution technologies for the integration of variable renewable energy sources—a review”, Renew Energy, vol. 145, pp. 2271–2285, 2020. DOI: https://www.doi.org/10.1016/J.RENENE.2019.06.147.

[9] K. R. Abbasi, M. Shahbaz, J. Zhang, M. Irfan y R. Alvarado, “Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy”, Renew Energy, vol. 187, pp. 390–402, 2022. DOI: https://www.doi.org/10.1016/J.RENENE.2022.01.066.

[10] R. Vakulchuk, I. Overland y D. Scholten, “Renewable energy and geopolitics: A review”, Renewable and Sustainable Energy Reviews, vol. 122, p. 109547, 2020. DOI: https://www.doi.org/10.1016/J.RSER.2019.109547.

[11] M. J. B. Kabeyi y O. A. Olanrewaju, “Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply”, Front Energy Res, vol. 9, 2022. DOI: https://www.doi.org/10.3389/fenrg.2021.743114.

[12] T. Z. Ang, M. Salem, M. Kamarol, H. S. Das, M. A. Nazari y N. Prabaharan, “A comprehensive study of renewable energy sources: Classifications, challenges and suggestions”, Energy Strategy Reviews, vol. 43, p. 100939, 2022. DOI: https://www.doi.org/10.1016/J.ESR.2022.100939.

[13] S. Impram, S. Varbak Nese y B. Oral, “Challenges of renewable energy penetration on power system flexibility: A survey”, Energy Strategy Reviews, vol. 31, p. 100539, 2020. DOI: https://www.doi.org/10.1016/J.ESR.2020.100539.

[14] A. Q. Al-Shetwi, “Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges”, Science of The Total Environment, vol. 822, p. 153645, 2022. DOI: https://www.doi.org/10.1016/J.SCITOTENV.2022.153645.

[15] F. Kourougianni et al., “A comprehensive review of green hydrogen energy systems”, Renew Energy, vol. 231, p. 120911, 2024. DOI: https://www.doi.org/10.1016/J.RENENE.2024.120911.

[16] M. Younas, S. Shafique, A. Hafeez, F. Javed y F. Rehman, “An Overview of Hydrogen Production: Current Status, Potential, and Challenges”, Fuel, vol. 316, p. 123317, 2022. DOI: https://www.doi.org/10.1016/J.FUEL.2022.123317.

[17] Q. Hassan et al., “Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation”, Int J Hydrogen Energy, vol. 48, no. 46, pp. 17383–17408, 2023. DOI: https://www.doi.org/10.1016/J.IJHYDENE.2023.01.175.

[18] I. International Energy Agency, “Global Hydrogen Review 2023”, 2023. [En línea]. Disponible en: https://www.iea.org/reports/global-hydrogen-review-2023.

[19] I. International Energy Agency, “The Future of Hydrogen”, 2019. [En línea]. Disponible en: https://www.iea.org/reports/the-future-of-hydrogen. [Último acceso: 13/08/2024].

[20] M. Ji y J. Wang, “Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators”, International Journal of Hydrogen Energy, vol. 46, nro. 78, 2021. DOI: https://www.doi.org/10.1016/j.ijhydene.2021.09.142.

[21] S. Shiva Kumar y H. Lim, “An overview of water electrolysis technologies for green hydrogen production”, Energy Reports, vol. 8, 2022. DOI: https://www.doi.org/10.1016/j.egyr.2022.10.127.

[22] I. Ridjan, B. V. Mathiesen y D. Connolly, “Terminology used for renewable liquid and gaseous fuels based on the conversion of electricity: A review”, Journal of Cleaner Production, vol. 112, 2016. DOI: https://www.doi.org/10.1016/j.jclepro.2015.05.117.

[23] M. J. Palys y P. Daoutidis, “Power-to-X: A review and perspective”, Comput. Chem. Eng., vol. 165, p. 107948, 2022. DOI: https://www.doi.org/10.1016/J.COMPCHEMENG.2022.107948.

[24] E. Rozzi, F. D. Minuto, A. Lanzini y P. Leone, “Green Synthetic Fuels: Renewable Routes for the Conversion of Non-Fossil Feedstocks into Gaseous Fuels and Their End Uses”, Energies (Basel), vol. 13, nro. 2, p. 420, 2020. DOI: https://www.doi.org/10.3390/en13020420.

[25] M. Kobina y K. Gil, “Green Hydrogen: A key investment for the energy transition”, 2024. [En línea]. Disponible en: https://blogs.worldbank.org/en/ppps/green-hydrogen-key-investment-energy-transition?cid=SHR_BlogSiteShare_EN_EXT. [Último acceso: 09/07/2024].

[26] International PtX Hub, “A Geothermal Approach to Power-to-X in El Salvador, Chile, and Kenya”, 2024. [En línea]. Disponible en: https://ptx-hub.org/a-geothermal-approach-to-ptx/. [Último acceso: 15/08/2024].

[27] J. Incer-Valverde, L. J. Patiño-Arévalo, G. Tsatsaronis y T. Morosuk, “Hydrogen-driven Power-to-X: State of the art and multicriteria evaluation of a study case”, Energy Conversion and Management, vol. 8, 2022. DOI: https://www.doi.org/10.1016/j.enconman.2022.115814.

[28] Royal Society (Great Britain), “Sustainable synthetic carbon based fuels for transport.”, 2019. [En línea]. Disponible en: https://royalsociety.org/-/media/policy/projects/synthetic-fuels/synthetic-fuels-briefing.pdf. [Último acceso: 09/07/2024].

[29] PtX Hub, “PtX.Sustainability Dimensions and Concerns POWER TO X”, 2024. [En línea]. Disponible en: https://ptx-hub.org/ptx-sustainability/. [Último acceso: 09/07/2024].

[30] International Renewable Energy Agency and Methanol Institute, “Innovation outlook: Renewable methanol”, 2021. [En línea]. Disponible en: https://www.irena.org/publications/2021/Jan/Innovation-Outlook-Renewable-Methanol. [Último acceso: 18/07/2024].

[31] IRENA-AEA, “Innovation Outlook: Renewable Ammonia”, 2022. [En línea]. Disponible en: https://www.irena.org/publications/2022/May/Innovation-Outlook-Renewable-Ammonia.

[32] M. Sterner y M. Specht, “Power-to-gas and power-to-x—the history and results of developing a new storage concept”, Energies (Basel), vol. 14, nro. 20, 2021. DOI: https://www.doi.org/10.3390/en14206594.

[33] S. Brynolf, M. Taljegard, M. Grahn y J. Hansson, “Electrofuels for the transport sector: A review of production costs”, Renewable and Sustainable Energy Reviews, vol. 81, 2022. DOI: https://www.doi.org/10.1016/j.rser.2017.05.288.

[34] H. Ababneh y B. H. Hameed, “Electrofuels as emerging new green alternative fuel: A review of recent literature”, Energy Conversion and Management, vol. 254, 2022. DOI: https://www.doi.org/10.1016/j.enconman.2022.115213.

[35] H. Singh, C. Li, P. Cheng, X. Wang y Q. Liu, “A critical review of technologies, costs, and projects for production of carbon-neutral liquid e-fuels from hydrogen and captured CO2”, Royal Society of Chemistry, nro. 9, 2022. DOI: https://www.doi.org/10.1039/d2ya00173j.

[36] F. M. Orr, “Carbon Capture, Utilization, and Storage: An Update”, SPE Journal, vol. 23, nro. 6, pp. 2444–2455, 2018. DOI: https://www.doi.org/10.2118/194190-PA.

[37] M. D. Garba et al., “CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons”, J. Environ. Chem. Eng., vol. 9, nro. 2, p. 104756, 2021. DOI: https://www.doi.org/10.1016/J.JECE.2020.104756.

[38] A. S. Travis, Nitrogen Capture, 1a ed., Cham, Springer International Publishing, 2018. DOI: https://www.doi.org/10.1007/978-3-319-68963-0.

[39] T. Cholewa, M. Semmel, F. Mantei, R. Güttel y O. Salem, “Process Intensification Strategies for Power-to-X Technologies”, ChemEngineering, vol. 6, nro. 1, p. 13, 2022. DOI: https://www.doi.org/10.3390/chemengineering6010013.

[40] K. de Kleijne, S. V. Hanssen, L. van Dinteren, M. A. J. Huijbregts, R. van Zelm y H. de Coninck, “Limits to Paris compatibility of CO2 capture and utilization”, One Earth, vol. 5, nro. 2, pp. 168–185, 2022. DOI: https://www.doi.org/10.1016/j.oneear.2022.01.006.

[41] J. Delbeke y P. Vis, Towards a Climate-Neutral Europe, Londres, Routledge, 2019. DOI: https://www.doi.org/10.4324/9789276082569.

[42] R. Rosa, “The Role of Synthetic Fuels for a Carbon Neutral Economy”, Journal of Carbon Research, vol. 3, nro. 2, p. 11, 2017. DOI: https://www.doi.org/10.3390/c3020011.

[43] Ministerio de Ambiente y Energía (MINAE) y Secretaría de Planificación del Subsector Energía (SEPSE), “Estrategia Nacional H2 Verde de Costa Rica”, San José, 2022. Disponible en: https://www.minae.go.cr/energia/Estrategia-Nacional-de-H2-Verde-Costa-Rica.pdf.

[44] Hinicio SA y GIZ, “Study on the possibilities to produce, use and export green hydrogen in Costa Rica”, 2021. [En línea]. Disponible en: https://www.readkong.com/page/study-on-the-possibilities-to-produce-use-and-export-4562605

[45] P. Moya y R. Dipippo, “Miravalles Unit3, Single-Flash Plant, Guanacaste, Costa Rica: Technical and Environmental Performance Assessment”, en Proceedings World Geothermal Congress, Bali, International Geothermal Association, 2010, pp. 25–29. Disponible en: https://www.researchgate.net/publication/229052271_Miravalles_Unit_3_Single-Flash_Plant_Guanacaste_Costa_Rica_Technical_and_Environmental_Performance_Assessment.

[46] Instituto Costarricense de Electricidad, Inventario de Gases de Efecto Invernadero del Sistema Eléctrico Nacional, 2021. Gerencia de Electricidad, Proceso Planificación y Sostenibilidad, San José, 2022.

[47] MIDEPLAN, “Plan Nacional de Desarrollo e Inversión Pública 2023-2026 Rogelio Fernández Güell”, San José, 2022. [En línea]. Disponible en: https://www.mideplan.go.cr

[48] R. S. El-Emam y H. Özcan, “Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production”, Journal of Cleaner Production, vol. 220, pp. 593–609, 2019. DOI: https://www.doi.org/10.1016/j.jclepro.2019.01.309.

[49] A. Martínez et al., “Feasibility Analysis for a CO2 Purification Technology to be Installed in Geothermal Power Plants”, Proceedings World Geothermal Congress 2020, 2021. [En línea]. Disponible en: https://www.researchgate.net/publication/337367282

[50] I. Budach et al., “A geothermal approach to power-to-X in El Salvador, Chile, and Kenya”, Berlín, 2023. [En línea]. Disponible en: https://ptx-hub.org/wp-content/uploads/2023/05/International-PtX-Hub_202305_A-geothermal-approach-to-PtX.pdf. [Último acceso: 11/07/2024].

[51] A. Baccioli et al., “Cost effective power-to-X plant using carbon dioxide from a geothermal plant to increase renewable energy penetration”, Energy Convers Manag, vol. 226, 2020. DOI: https://www.doi.org/10.1016/j.enconman.2020.113494.

[52] M. Brunelli, Introduction to the Analytic Hierarchy Process, 1a ed., Springer Cham, 2015.

[53] J. Incer-Valverde, “Large-scale hydrogen supply chain: A comprehensive evaluation”, Technischen Universität Berlin, 2023. [En línea]. Disponible en: https://depositonce.tu-berlin.de/items/a17a446d-2b0c-446c-95ed-a7bc9d2b44b3. [Último acceso: 11/08/2025].

[54] G. Oghenewiroro Odu, “Multi-criteria decision making/selection using weighted sum method and team-compromise instrument”, Industrial Engineering Letters, vol. 8, nro. 4, pp. 64–78, 2018. Disponible en: https://core.ac.uk/download/pdf/234685731.pdf

[55] A. Risco-Bravo, C. Varela, J. Bartels y E. Zondervan, “From green hydrogen to electricity: A review on recent advances, challenges, and opportunities on power-to-hydrogen-to-power systems”, Renewable and Sustainable Energy Reviews, vol. 189, p. 113930, 2024. DOI: https://www.doi.org/10.1016/J.RSER.2023.113930.

[56] S. Sebbahi et al., “A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production”, Int J Hydrogen Energy, vol. 82, pp. 583–599, 2024. DOI: https://www.doi.org/10.1016/J.IJHYDENE.2024.07.428.

[57] Y. Wang, Y. Pang, H. Xu, A. Martinez y K. S. Chen, “PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development – a review”, Energy Environ Sci, vol. 15, nro. 6, pp. 2288–2328, 2022. DOI: https://www.doi.org/10.1039/D2EE00790H.

[58] A. Pandiyan, A. Uthayakumar, R. Subrayan, S. W. Cha y S. B. Krishna Moorthy, “Review of solid oxide electrolysis cells: a clean energy strategy for hydrogen generation”, Nanomaterials and Energy, vol. 8, nro. 1, pp. 2–22, 2019. DOI: https://www.doi.org/10.1680/jnaen.18.00009.

[59] J. H. Prosser et al., “Cost analysis of hydrogen production by high-temperature solid oxide electrolysis”, Int J Hydrogen Energy, vol. 49, pp. 207–227, 2024. DOI: https://www.doi.org/10.1016/J.IJHYDENE.2023.07.084.

[60] P. C. Wankat y K. P. Kostroski†, “Hybrid Air Separation Processes for Production of Oxygen and Nitrogen”, Sep Sci Technol, vol. 45, nro. 9, pp. 1171–1185, 2010. DOI: https://www.doi.org/10.1080/01496391003745728.

[61] H. Mikulčić et al., “Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2”, Renewable and Sustainable Energy Reviews, vol. 114, p. 109338, 2019. DOI: https://www.doi.org/10.1016/J.RSER.2019.109338.

[62] F. M. Baena-Moreno, M. Rodríguez-Galán, F. Vega, B. Alonso-Fariñas, L. F. Vilches Arenas y B. Navarrete, “Carbon capture and utilization technologies: a literature review and recent advances”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 41, nro. 12, pp. 1403–1433, 2019. DOI: https://www.doi.org/10.1080/15567036.2018.1548518.

[63] C. Smith, A. K. Hill y L. Torrente-Murciano, “Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape”, Energy Environ Sci, vol. 13, nro. 2, pp. 331–344, 2020. DOI: https://www.doi.org/10.1039/c9ee02873k.

[64] G. Chehade y I. Dincer, “Progress in green ammonia production as potential carbon-free fuel”, Fuel, vol. 299, p. 120845, 2021. DOI: https://www.doi.org/10.1016/J.FUEL.2021.120845.

[65] R. Estevez, F. J. López-Tenllado, L. Aguado-Deblas, F. M. Bautista, A. A. Romero y D. Luna, “Current Research on Green Ammonia (NH3) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review”, Energies, vol. 16, nro. 14, p. 5451, 2023. DOI: https://www.doi.org/10.3390/en16145451.

[66] O. A. Ojelade, S. F. Zaman y B. J. Ni, “Green ammonia production technologies: A review of practical progress”, J Environ Manage, vol. 342, p. 118348, 2023. DOI: https://www.doi.org/10.1016/J.JENVMAN.2023.118348.

[67] S. C. Galusnyak, L. Petrescu, V. C. Sandu y C. C. Cormos, “Environmental impact assessment of green ammonia coupled with urea and ammonium nitrate production”, J Environ Manage, vol. 343, p. 118215, 2023. DOI: https://www.doi.org/10.1016/J.JENVMAN.2023.118215.

[68] S. Rönsch et al., “Review on methanation - from fundamentals to current projects”, Fuel, vol. 166, pp. 276–296, 2016. DOI: https://www.doi.org/10.1016/j.fuel.2015.10.111.

[69] A. Perna, L. Moretti, G. Ficco, G. Spazzafumo, L. Canale y M. Dell’Isola, “SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment”, Applied Sciences, vol. 10, nro. 23, p. 8443, 2020. DOI: https://www.doi.org/10.3390/app10238443.

[70] D. Sheldon, “Methanol Production–A Technical History”, Johnson Matthey Technology Review, vol. 61, nro. 3, pp. 172–182, 2017. DOI: https://www.doi.org/10.1595/205651317X695622.

[71] J. A. Garcia, M. Villen-Guzman, J. M. Rodriguez-Maroto y J. M. Paz-Garcia, “Technical analysis of CO2 capture pathways and technologies”, J Environ Chem Eng, vol. 10, nro. 5, p. 108470, 2022. DOI: https://www.doi.org/10.1016/j.jece.2022.108470.

[72] S. Faramawy, T. Zaki y A. A-E. Sakr, “Natural gas origin, composition, and processing: A review”, J Nat Gas Sci Eng, vol. 34, pp. 34–54, 2016. DOI: https://www.doi.org/10.1016/j.jngse.2016.06.030.

[73] J. Guilera, J. Ramon Morante, y T. Andreu, “Economic viability of SNG production from power and CO2”, Energy Convers Manag, vol. 162, pp. 218–224, 2018. DOI: https://www.doi.org/10.1016/j.enconman.2018.02.037.

[74] J. Li, C. Wu, D. Cao, S. Hu, L. Weng y K. Liu, “Green Methanol—An Important Pathway to Realize Carbon Neutrality”, Engineering, vol. 29, pp. 27–31, 2023. DOI: https://www.doi.org/10.1016/j.eng.2023.08.005.

[75] T. J. Deka, A. I. Osman, D. C. Baruah y D. W. Rooney, “Methanol fuel production, utilization, and techno-economy: a review”, Environ Chem Lett, vol. 20, nro. 6, pp. 3525–3554, 2022. DOI: https://www.doi.org/10.1007/s10311-022-01485-y.

[76] M. R. Gogate, “Methanol-to-olefins process technology: current status and future prospects”, Pet Sci Technol, vol. 37, nro. 5, pp. 559–565, 2019. DOI: https://www.doi.org/10.1080/10916466.2018.1555589.

[77] F. Dalena, A. Senatore, A. Marino, A. Gordano, M. Basile y A. Basile, “Methanol Production and Applications: An Overview”, en Methanol, 2018, pp. 3–28. DOI: https://www.doi.org/10.1016/B978-0-444-63903-5.00001-7.

[78] C. Bergins et al., “A Technology Review and Cost Analysis of the Production of Low Carbon Methanol and Following Methanol to Gasoline Process”, en Zukünftige Kraftstoffe, Springer Berlin Heidelberg, 2019, pp. 433–463. DOI: https://www.doi.org/10.1007/978-3-662-58006-6_19.

[79] I. Yarulina, A. D. Chowdhury, F. Meirer, B. M. Weckhuysen y J. Gascon, “Recent trends and fundamental insights in the methanol-to-hydrocarbons process”, Nat Catal, vol. 1, nro. 6, pp. 398–411, 2018. DOI: https://www.doi.org/10.1038/s41929-018-0078-5.

[80] J. P. Chakraborty, S. Singh y S. K. Maity, “Advances in the conversion of methanol to gasoline”, in Hydrocarbon Biorefinery, 2022, pp. 177–200. DOI: https://www.doi.org/10.1016/B978-0-12-823306-1.00008-X.

[81] S. Bube, N. Bullerdiek, S. Voß y M. Kaltschmitt, “Kerosene production from power-based syngas–A technical comparison of the Fischer-Tropsch and methanol pathway”, Fuel, vol. 366, p. 131269, 2024. DOI: https://www.doi.org/10.1016/j.fuel.2024.131269.

[82] S. Garg, C. A. Giron Rodriguez, T. E. Rufford, J. R. Varcoe y B. Seger, “How membrane characteristics influence the performance of CO2 and CO electrolysis”, Energy Environ Sci, vol. 15, nro. 11, pp. 4440–4469, 2022. DOI: https://www.doi.org/10.1039/D2EE01818G.

[83] M. González-Castaño, B. Dorneanu y H. Arellano-García, “The reverse water gas shift reaction: a process systems engineering perspective”, React Chem Eng, vol. 6, nro. 6, pp. 954–976, 2021. DOI: https://www.doi.org/10.1039/D0RE00478B.

[84] N. Salahudeen, A. A. Rasheed, A. Babalola y A. U. Moses, “Review on technologies for conversion of natural gas to methanol”, J Nat Gas Sci Eng, vol. 108, p. 104845, 2022. DOI: https://www.doi.org/10.1016/j.jngse.2022.104845.

[85] F. T. Alsudani et al., “Fisher–Tropsch Synthesis for Conversion of Methane into Liquid Hydrocarbons through Gas-to-Liquids (GTL) Process: A Review”, Methane, vol. 2, nro. 1, pp. 24–43, 2023. DOI: https://www.doi.org/10.3390/methane2010002.

[86] C. Markowitsch, M. Lehner y M. Maly, “Comparison and techno-economic evaluation of process routes for lower olefin production via Fischer–Tropsch and methanol synthesis”, International Journal of Greenhouse Gas Control, vol. 129, p. 103985, 2023. DOI: https://www.doi.org/10.1016/j.ijggc.2023.103985.

[87] A. Soler et al., “E-Fuels: A techno-economic assessment of European domestic production and imports towards 2050”, 2022. [En línea]. Disponible en: https://www.concawe.eu/publication/e-fuels-a-techno-economic-assessment-of-european-domestic-production-and-imports-towards-2050/. [Último acceso: 25/09/2024]

[88] E4tech, “Decarbonisation potential of synthetic kerosene Final Report E4tech (UK) Ltd for Ministerie van Infrastructuur en Waterstaat”, 2021. [En línea]. Disponible en: https://www.hernieuwbarebrandstoffen.nl/post/decarbonisation-potential-of-synthetic-kerosene. [Último acceso: 25/09/2024]

[89] M. Fallah Vostakola, H. Ozcan, R. S. El-Emam y B. Amini Horri, “Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production”, Energies, vol. 16, nro. 8, 2023. DOI: https://www.doi.org/10.3390/en16083327.

[90] Institute of Thermal Engineering, “Project: EU - MegaSyn - Megawatt scale co-electrolysis as syngas generation for e-fuels synthesis”, 2021. [En línea]. Disponible en: https://www.tugraz.at/en/institutes/iwt/projects/eu-projects/eu-megasyn. [Último acceso: 12/10/2025]

[91] P. Li, S. Gong, C. Li y Z. Liu, “Analysis of routes for electrochemical conversion of CO2 to methanol”, Clean Energy, vol. 6, nro. 1, pp. 967–975, 2022. DOI: https://www.doi.org/10.1093/ce/zkac007.

[92] M. Andresh et al., “A Geotermal Ppproach to Power-to-X in El Salvador, Chile, and Kenya”, Berlín, 2023. [En línea]. Disponible en: https://www.ptx-hub.org

[93] T. Jänisch, U. Neuling, F. Carels, M. Aigner, M. Kaltschmitt y U. Gaudig, “Outline of a 10,000 t/a PtL plant: Technological Assessment and Upscale-Study”, 13th International Colloquium Fuels, Narr Francke Attempto Verlag GmbH + Co. KG, 2021, pp. 51–64. Disponible en: https://elib.dlr.de/188504/1/2021_Jaenisch_Int_Coll_Fuels_final.pdf

[94] V. Dieterich, A. Buttler, A. Hanel, H. Spliethof y S. Fendt, “Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review”, Energy & Environmental Science, nro. 10, 2020. DOI: https://www.doi.org/10.1039/d0ee01187h.

[95] I. Karountzos, “Methanol production from renewable sources A techno-economic assessment”, tesis, Delft University of Technology, Delft, 2021. Disponible en: https://resolver.tudelft.nl/uuid:9359a618-6f5d-40ce-b8e0-27a15cb86598.

[96] J. A. Garcia, M. Villen-Guzman, J. M. Rodriguez-Maroto y J. M. Paz-Garcia, “Technical analysis of CO2 capture pathways and technologies”, J Environ Chem Eng, vol. 10, nro. 5, p. 108470, 2022. DOI: https://www.doi.org/10.1016/j.jece.2022.108470.

[97] M. Hermesmann, K. Grübel, L. Scherotzki y T. E. Müller, “Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen”, Renewable and Sustainable Energy Reviews, vol. 138, p. 110644, 2021. DOI: https://www.doi.org/10.1016/j.rser.2020.110644.

[98] J. A. Barrera Gajardo, “Technical-economic analysis of the electrosynthesis of ammonia,” tesis de máster, Politecnico Di Torino, 2021. Disponible en: https://webthesis.biblio.polito.it/17290/.

[99] K. Afzali, “The role of power-to-methanol technologies in the energy mix”, tesis de máster, Delft University of Technology, 2020. Disponible en: https://repository.tudelft.nl/record/uuid:ca72bf09-673c-476c-b092-e5745641a98e

[100] G. Bozzano y F. Manenti, “Efficient methanol synthesis: Perspectives, technologies and optimization strategies”, Prog Energy Combust Sci, vol. 56, pp. 71–105,2016. DOI: https://www.doi.org/10.1016/j.pecs.2016.06.001.

[101] S. Simon Araya et al., “A Review of The Methanol Economy: The Fuel Cell Route”, Energies, vol. 13, nro. 3, p. 596, 2020. DOI: https://www.doi.org/10.3390/en13030596.

[102] D. S. Marlin, E. Sarron y Ó. Sigurbjörnsson, “Process Advantages of Direct CO2 to Methanol Synthesis”, Front Chem, vol. 6, 2018. DOI: https://www.doi.org/10.3389/fchem.2018.00446.

[103] A. Peppas, S. Kottaridis, C. Politi y P. M. Angelopoulos, “Carbon Capture Utilisation and Storage in Extractive Industries for Methanol Production”, Eng, vol. 4, nro. 1, pp. 480–506, 2023. DOI: https://www.doi.org/10.3390/eng4010029.

[104] P. Aubin, L. Wang, y J. Van herle, “Power-to-methane via co-electrolysis of H2O and CO2: Reactor operation and system simulation”, Energy Convers Manag, vol. 294, p. 117520, 2023. DOI: https://www.doi.org/10.1016/j.enconman.2023.117520.

[105] C. Choe, H. Kim y H. Lim, “Feasibility study of power-to-gas as simultaneous renewable energy storage and CO2 utilization: Direction toward economic viability of synthetic methane production”, Sustainable Energy Technologies and Assessments, vol. 57, p. 103261, 2023. DOI: https://www.doi.org/10.1016/j.seta.2023.103261.

[106] E. Konttila, “Cost optimization of power-to-methane process with dynamic modelling”, tesis de máster, Aalto University, Helsinki, 2022. Disponible en: https://aaltodoc.aalto.fi/items/d3eb4eb7-b2df-4d1e-aa6e-a81d2d13f84f.

[107] C. Liang, “Green Haber-Bosch Process: A Small-Scale Ammonia Reactor System Design”, tesis de máster, Delft University of Technology, 2019. Disponible en: https://resolver.tudelft.nl/uuid:69be960d-2ef3-4945-99c2-43eb1e1a52bb.

[108] P. Nicolas, Technoeconomic and environmental analysis of green ammonia in Spain, Barcelona, Universitat Politècnica de Catalunya, 2022. Disponible en: https://upcommons.upc.edu/handle/2117/377175?show=full.

[109] S. Joseph Sekhar, A. Said Ahmed Al-Shahri, G. Glivin, T. Le y T. Mathimani, “A critical review of the state-of-the-art green ammonia production technologies- mechanism, advancement, challenges, and future potential”, Fuel, vol. 358, p. 130307, 2024. DOI: https://www.doi.org/10.1016/j.fuel.2023.130307.

[110] A. G. Olabi et al., “Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals”, Energy Convers Manag, vol. 277, p. 116594, 2023. DOI: https://www.doi.org/10.1016/j.enconman.2022.116594.

[111] H2LAC, “Atome y Cavendish crean la National Ammonia Corporation en Costa Rica para desarrollar amoniaco verde”, 2023. [En línea]. Disponible en: https://h2lac.org/noticias/atome-y-cavendish-crean-la-national-ammonia-corporation-en-costa-rica-para-desarrollar-amoniaco-verde/.

[112] Atome, “Costa Rica: Project Summary”, 2024. [En línea]. Disponible en: https://www.atomeplc.com/projects/costa-rica/.

[113] Cavendish, “Green Hydrogen in Costa rica”, 2024. [En línea]. Disponible en: https://cavendish.cr/hydrogen/.

[114] M. Mahmoud, M. Ramadan, S. Naher, K. Pullen, M. Ali Abdelkareem y A. G. Olabi, “A review of geothermal energy-driven hydrogen production systems”, Thermal Science and Engineering Progress, vol. 22, 2021. DOI: https://www.doi.org/10.1016/j.tsep.2021.100854.

[115] A. Patonia y R. Poudineh, “Cost-competitive green hydrogen: how to lower the cost of electrolysers?”, 2022. [En línea]. Disponible en: https://www.oxfordenergy.org/publications/cost-competitive-green-hydrogen-how-to-lower-the-cost-of-electrolysers/. [Último acceso: 21/07/2024].

[116] G. K. Karayel, N. Javani y I. Dincer, “Effective use of geothermal energy for hydrogen production: A comprehensive application”, Energy, vol. 249, p. 123597, 2022. DOI: https://www.doi.org/10.1016/j.energy.2022.123597.

[117] H. McLaughlin et al., “Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world”, Renewable and Sustainable Energy Reviews, vol. 177, p. 113215, 2023. DOI: https://www.doi.org/10.1016/j.rser.2023.113215.

[118] E. Liu, X. Lu y D. Wang, “A Systematic Review of Carbon Capture, Utilization and Storage: Status, Progress and Challenges”, Energies, vol. 16, nro. 6, p. 2865, 2023. DOI: https://www.doi.org/10.3390/en16062865.

[119] D. Berstad y L. O. Nord, “Acid Gas Removal in Geothermal Power Plant in Iceland”, Energy Procedia, vol. 86, pp. 32–40, 2016. DOI: https://www.doi.org/10.1016/j.egypro.2016.01.004.

[120] H. Klein et al., “Flexible Operation of Air Separation Units ”, ChemBioEng Reviews, vol. 8, nro. 4, pp. 357–374, 2021. DOI: https://www.doi.org/10.1002/cben.202100023.

[121] N. Campion, H. Nami, P. R. Swisher, P. Vang Hendriksen y M. Münster, “Techno-economic assessment of green ammonia production with different wind and solar potentials”, Renewable and Sustainable Energy Reviews, vol. 173, p. 113057, 2023. DOI: https://www.doi.org/10.1016/j.rser.2022.113057.

[122] A. Dechany, K. Van Geem y J. Proost, “Process implications of electrifying ammonia production”, Curr Opin Chem Eng, vol. 40, p. 100915, 2023. DOI: https://www.doi.org/10.1016/j.coche.2023.100915.

[123] S. Devkota, S. Ban, R. Shrestha y B. Uprety, “Techno-economic analysis of hydropower based green ammonia plant for urea production in Nepal”, Int J Hydrogen Energy, vol. 48, nro. 58, pp. 21933–21945, 2023. DOI: https://www.doi.org/10.1016/j.ijhydene.2023.03.087.

[124] M. H. Hasan et al., “A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier”, Energies, vol. 14, nro. 13, p. 3732, 2021. DOI: https://www.doi.org/10.3390/en14133732.

[125] A. Valera-Medina et al., “Review on Ammonia as a Potential Fuel: From Synthesis to Economics”, Energy & Fuels, vol. 35, nro. 9, pp. 6964–7029, 2021. DOI: https://www.doi.org/10.1021/acs.energyfuels.0c03685.

[126] M. Al-Breiki y Y. Bicer, “Liquified hydrogen vs. liquified renewable methane: Evaluating energy consumption and infrastructure for sustainable fuels”, Fuel, vol. 350, p. 128779, 2023. DOI: https://www.doi.org/10.1016/j.fuel.2023.128779.

[127] V. Dias, M. Pochet, F. Contino y H. Jeanmart, “Energy and Economic Costs of Chemical Storage”, Front Mech Eng, vol. 6, 2020. DOI: https://www.doi.org/10.3389/fmech.2020.00021.

[128] International Energy Agency-IEA, Energy Technology Perspectives 2020, Paris, 2020. Disponible en: https://www.iea.org/reports/energy-technology-perspectives-2020.

[129] International Energy Agency-IEA, Ammonia Technology Roadmap, Paris, 2021. Disponible en: https://www.iea.org/reports/ammonia-technology-roadmap.

[130] X. Liang et al., Modern steel plant carbon capture and storage project in the PRC: Preliminary feasibility study report, 2022. Disponible en: https://www.adb.org/sites/default/files/project-documents/52041/52041-003-tacr-en_3.pdf.

[131] S. Kolb, T. Plankenbühler, K. Hofmann, J. Bergerson y J. Karl, “Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review”, Renewable and Sustainable Energy Reviews, vol. 146, p. 111147, 2021. DOI: https://www.doi.org/10.1016/j.rser.2021.111147.

[132] M. Nizami, Slamet y W. W. Purwanto, “Solar PV based power-to-methanol via direct CO2 hydrogenation and H2O electrolysis: Techno-economic and environmental assessment”, Journal of CO2 Utilization, vol. 65, p. 102253, 2022. DOI: https://www.doi.org/10.1016/j.jcou.2022.102253.

[133] O. Oner y K. Khalilpour, “Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool”, Renewable and Sustainable Energy Reviews, vol. 168, p. 112764, 2022. DOI: https://www.doi.org/10.1016/j.rser.2022.112764.

[134] Z. Yang, S. Ahmad, A. Bernardi, W. long Shang, J. Xuan y B. Xu, “Evaluating alternative low carbon fuel technologies using a stakeholder participation-based q-rung orthopair linguistic multi-criteria framework”, Appl Energy, vol. 332, 2023. DOI: https://www.doi.org/10.1016/j.apenergy.2022.120492.

[135] M. Conislla, J. Arias y D. Rodríguez, “Aumenta 137% el valor de las importaciones de fertilizantes químicos de América Latina y el Caribe en 2022”, Blog del IICA, 2023. Disponible en: https://blog.iica.int/blog/aumenta-137-valor-las-importaciones-fertilizantes-quimicos-america-latina-caribe-en-2022. [Último acceso: 12/10/2025].

Cómo citar

IEEE

[1]
S. Orias-Rodríguez, J. Incer-Valverde, y D. González-Flores, «Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica», Rev. Colomb. Quim., vol. 54, n.º 1, pp. 3–16, oct. 2025.

ACM

[1]
Orias-Rodríguez, S., Incer-Valverde, J. y González-Flores, D. 2025. Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica. Revista Colombiana de Química. 54, 1 (oct. 2025), 3–16. DOI:https://doi.org/10.15446/rev.colomb.quim.v54n1.118304.

ACS

(1)
Orias-Rodríguez, S.; Incer-Valverde, J.; González-Flores, D. Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica. Rev. Colomb. Quim. 2025, 54, 3-16.

APA

Orias-Rodríguez, S., Incer-Valverde, J. & González-Flores, D. (2025). Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica. Revista Colombiana de Química, 54(1), 3–16. https://doi.org/10.15446/rev.colomb.quim.v54n1.118304

ABNT

ORIAS-RODRÍGUEZ, S.; INCER-VALVERDE, J.; GONZÁLEZ-FLORES, D. Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica. Revista Colombiana de Química, [S. l.], v. 54, n. 1, p. 3–16, 2025. DOI: 10.15446/rev.colomb.quim.v54n1.118304. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/118304. Acesso em: 28 dic. 2025.

Chicago

Orias-Rodríguez, Sebastián, Jimena Incer-Valverde, y Diego González-Flores. 2025. «Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica». Revista Colombiana De Química 54 (1):3-16. https://doi.org/10.15446/rev.colomb.quim.v54n1.118304.

Harvard

Orias-Rodríguez, S., Incer-Valverde, J. y González-Flores, D. (2025) «Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica», Revista Colombiana de Química, 54(1), pp. 3–16. doi: 10.15446/rev.colomb.quim.v54n1.118304.

MLA

Orias-Rodríguez, S., J. Incer-Valverde, y D. González-Flores. «Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica». Revista Colombiana de Química, vol. 54, n.º 1, octubre de 2025, pp. 3-16, doi:10.15446/rev.colomb.quim.v54n1.118304.

Turabian

Orias-Rodríguez, Sebastián, Jimena Incer-Valverde, y Diego González-Flores. «Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica». Revista Colombiana de Química 54, no. 1 (octubre 29, 2025): 3–16. Accedido diciembre 28, 2025. https://revistas.unal.edu.co/index.php/rcolquim/article/view/118304.

Vancouver

1.
Orias-Rodríguez S, Incer-Valverde J, González-Flores D. Estudio multicriterio para seleccionar combustibles sintéticos a partir de energía geotérmica en Costa Rica. Rev. Colomb. Quim. [Internet]. 29 de octubre de 2025 [citado 28 de diciembre de 2025];54(1):3-16. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/118304

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

119

Descargas

Los datos de descargas todavía no están disponibles.