Publicado

2025-07-07

α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection

Adsorción de α-D-glucosa en nanoclústeres de Al24N24 y Al23N24 dopados con metales de transición: nuevas perspectivas para la biodetección

Adsorção de α-D-glicose em nanoaglomerados de Al24N24 e Al23N24 dopados com metal de transição: novas perspectivas para a biodetecção

DOI:

https://doi.org/10.15446/rev.colomb.quim.v53n2.118870

Palabras clave:

Nanoclusters, glucose adsorption, binding energy, density of states, biosensors (en)
nanoclusters, adsorción de glucosa, energía de enlace, densidad de estados, biosensores (es)
nanoclusters, adsorção de glicose, energia de ligação, densidade de estados, biossensores (pt)

Descargas

Autores/as

This work examines the structural and electrical characteristics of pristine Al24N24 and X-doped Al23N24 nanoclusters (X = Co, Ni, or Si) in their interaction with α-D-glucose molecules. Utilizing B3LYP/6-311+G(d,p) computational methods, we examine the optimal geometries, binding energies, cohesive energies, and electrical properties of these nanoclusters. Our results indicate that SiAl23N24 has the maximum binding energy, whereas CoAl23N24 presents just a marginal positive binding energy. The adsorption energies of glucose on these nanoclusters suggest a chemisorption mechanism. The study found that hexagonal SiAl23N24 and tetrahedral NiAl23N24 exhibited the most promising characteristics for glucose sensing due to significant bandgap changes, charge transfer, and high sensitivity. Additionally, octagonal Al24N24 showed potential as a ϕ-type glucose sensor.

Este trabajo examina las características estructurales y eléctricas de nanoagrupaciones de Al24N24 virgen y Al23N24 dopado con X (X = Co, Ni o Si) en su interacción con moléculas de α-D-glucosa. Utilizando métodos computacionales B3LYP/6-311+G(d,p), examinamos las geometrías óptimas, las energías de enlace, las energías de cohesión y las propiedades eléctricas de estas nanoagrupaciones. Nuestros resultados indican que SiAl23N24 tiene la máxima energía de enlace, mientras que CoAl23N24 presenta solo una energía de enlace positiva marginal. Las energías de adsorción de glucosa en estas nanoagrupaciones sugieren un mecanismo de quimisorción. El estudio encontró que SiAl23N24 hexagonal y NiAl23N24 tetraédrico exhibieron las características más prometedoras para la detección de glucosa debido a cambios significativos de banda prohibida, transferencia de carga y alta sensibilidad. Además, Al24N24 octagonal mostró potencial como un sensor de glucosa de tipo ϕ.

Este trabalho examina as características estruturais e elétricas de nanoaglomerados virgens de Al24N24 e Al23N24 dopados com X (X = Co, Ni, Si) em relação à sua interação com moléculas de α-D-glicose. Utilizando métodos computacionais B3LYP/6-311+G(d,p), examinámos as geometrias ótimas, as energias de ligação, as energias coesivas e as propriedades elétricas destes nanoaglomerados. Os nossos resultados indicam que o SiAl23N24 apresenta a energia de ligação máxima, enquanto que o CoAl23N24 apresenta apenas uma energia de ligação positiva marginal. As energias de adsorção da glicose nestes nanoaglomerados sugerem um mecanismo de quimissorção. o estudo descobriu que o SiAl23N24 hexagonal e o NiAl23N24 tetraédrico exibiram as características mais promissoras para a deteção de glicose devido a alterações significativas no bandgap, transferência de carga e alta sensibilidade. Além disso, o Al24N24 octogonal apresentou potencial como sensor de glicose do tipo ϕ.

Referencias

[1] A. J. González Fá, V. Orazi, E. A. González, A. Juan, and I. López-Corral, “DFT study of β-D-glucose adsorption on single-walled carbon nanotubes decorated with platinum. A bonding analysis,” Appl. Surf. Sci., vol. 423, pp. 542–548, 2017. DOI: https://doi.org/10.1016/j.apsusc.2017.05.227.

[2] E. A. Eno et al., “Molecular modeling of Cu-, Ag-, and Au-decorated aluminum nitride nanotubes for hydrogen storage application,” ACS Appl. Energy Mater., vol. 6, no. 8, pp. 4437–4452, 2023. DOI: https://doi.org/10.1021/acsaem.3c00587

[3] F. Kamali, G. Ebrahimzadeh-Rajaei, S. Mohajeri, A. Shamel, and M. Khodadadi-Moghaddam, “A computational design of X24Y24 (X = B, Al, and Y = N, P) nanoclusters as effective drug carriers for metformin anticancer drug: A DFT insight,” Inorg. Chem. Commun., vol. 141, p. 109527, Jul. 2022. DOI: https://doi.org/10.1016/J.INOCHE.2022.109527.

[4] I. Benjamin et al., “Transition metal-decorated B12N12–X (X= Au, Cu, Ni, Os, Pt, and Zn) nanoclusters as biosensors for carboplatin,” ACS omega, vol. 8, no. 11, pp. 10006–10021, 2023. DOI: https://doi.org/10.1021/acsomega.2c07250

[5] Q. He et al., “Phase engineering and synchrotron-based study on two-dimensional energy nanomaterials,” Chem. Rev., vol. 123, no. 17, pp. 10750–10807, 2023. DOI: https://doi.org/10.1021/acs.chemrev.3c00389

[6] T. Saha et al., “Wearable electrochemical glucose sensors in diabetes management: a comprehensive review,” Chem. Rev., vol. 123, no. 12, pp. 7854–7889, 2023. DOI: https://doi.org/10.1021/acs.chemrev.3c00078

[7] R. Jin, G. Li, S. Sharma, Y. Li, and X. Du, “Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures,” Chem. Rev., vol. 121, no. 2, pp. 567–648, 2020. DOI: https://doi.org/10.1021/acs.chemrev.0c00495

[8] X. Du et al., “CO2 and CH4 adsorption on different rank coals: A thermodynamics study of surface potential, Gibbs free energy change and entropy loss,” Fuel, vol. 283, p. 118886, 2021. DOI: https://doi.org/10.1016/j.fuel.2020.118886

[9] T. Yoon, W. Park, J. You, and S. Na, “Investigation of Direct Electron Transfer of Glucose Oxidase on a Graphene-CNT Composite Surface: A Molecular Dynamics Study Based on Electrochemical Experiments,” Nanomaterials, vol. 14, no. 13, 2024. DOI: https://doi.org/10.3390/nano14131073.

[10] Y. Han, P. Zhang, X. Duan, X. Gao, and L. Gao, “Advances in precise synthesis of metal nanoclusters and their applications in electrochemical biosensing of disease biomarkers,” Nanoscale, 2025. DOI: https://doi.org/10.1039/D4NR04714A

[11] E. Hosseinzadeh, A. Foroumadi, and L. Firoozpour, “A DFT study on the transition metal doped BN and AlN nanocages as a drug delivery vehicle for the cladribine drug,” J. Mol. Liq., vol. 374, p. 121262, 2023. DOI: https://doi.org/10.1016/j.molliq.2023.121262

[12] K. K. Singh, “A DFT studies on absorbing and sensing possibilities of glucose on graphene surface doped with Ag, Au, Cu, Ni & Pt atoms,” Biosens. Bioelectron. X, vol. 13, p. 100287, 2023. DOI: https://doi.org/10.1016/j.biosx.2022.100287

[13] A. Saikia, R. Newar, S. Das, A. Singh, D. J. Deuri, and A. Baruah, “Scopes and challenges of microfluidic technology for nanoparticle synthesis, photocatalysis and sensor applications: A comprehensive review,” Chem. Eng. Res. Des., vol. 193, pp. 516–539, 2023. DOI: https://doi.org/10.1016/j.cherd.2023.03.049

[14] P. K. Chattaraj and D. R. Roy, “Update 1 of: electrophilicity index,” Chem. Rev., vol. 107, no. 9, pp. PR46–PR74, 2007. DOI: https://doi.org/10.1021/cr078014b

[15] T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms,” Physica, vol. 1, no. 1, pp. 104–113, 1934. DOI: https://doi.org/https://doi.org/10.1016/S0031-8914(34)90011-2.

[16] X. Jia, H. Zhang, Z. Zhang, and L. An, “First-principles investigation of vacancy-defected graphene and Mn-doped graphene towards adsorption of H2S,” Superlattices Microstruct., vol. 134, no. July, 2019. DOI: https://doi.org/10.1016/j.spmi.2019.106235.

[17] T. Sato and H. Nakai, “Density functional method including weak interactions: Dispersion coefficients based on the local response approximation,” J. Chem. Phys., vol. 131, no. 22, 2009. DOI: https://doi.org/10.1063/1.3269802

[18] S. Tomić, B. Montanari, and N. M. Harrison, “The group III–V’s semiconductor energy gaps predicted using the B3LYP hybrid functional,” Phys. E Low-dimensional Syst. Nanostructures, vol. 40, no. 6, pp. 2125–2127, 2008. DOI: https://doi.org/10.1016/j.physe.2007.10.022

[19] A. A. Salari, “Are the inorganic B24N24, Al24N24, B24P24 and Al24P24 nanoclusters synthesizable or not? A DFT study,” Inorganica Chim. Acta, vol. 456, pp. 18–23, Feb. 2017. DOI: https://doi.org/10.1016/J.ICA.2016.11.006.

[20] A. Wang, J. Cui, L. Zhang, L. Liang, Y. Cao, and Q. Liu, “The chemical recognition of hydrogen fluoride via B24N24 nanocage: quantum chemical approach,” J. Mol. Model., vol. 29, no. 12, p. 386, 2023. DOI: https://doi.org/10.1007/s00894-023-05727-w.

[21] A. Frisch, “gaussian 09W Reference,” Wallingford, USA, 25p, vol. 470, 2009.

[22] M. Caricato, M. J. Frisch, A. Frisch, J. Hiscocks, and M. J. Frisch, Gaussian 09 IOps reference manual. 2013. [Online]. Available: http://www.gaussian.com/g_tech/g_iops/iops2.pdf

[23] M. García-Valverde, N. A. Cordero, and E. S. de la Cal, “GAUSSVIEW® as a tool for learning organic chemistry,” in EDULEARN15 Proceedings, IATED, 2015, pp. 4366–4370.

[24] A. N. D. L. Duality and I. Im, “G A U S S I A N S U M RULES IN Q U A N T U M C H R O M O D Y N A M I C S I ?,” vol. 250, pp. 61–108, 1985. DOI: https://doi.org/10.1016/0550-3213(85)90475-4

[25] S. Resan, R. Hameed, A. Al-Hilo, and M. Al-Anber, “The impact of torsional angles to tune the nonlinear optical response of chalcone molecule: Quantum computational study,” Rev. Cuba. Fis., vol. 37, no. 2, pp. 95–100, 2020.

[26] M. J. Al-anber, “Theoretical Semi-empirical Study of the Glycine Molecule Interaction with Fullerene C60,” Orbital Electron. J. Chem. North Americ, 2014, [Online]. Available: http://www.orbital.ufms.br/index.php/Chemistry/article/view/491 DOI: https://doi.org/10.12693/APhysPolA.126.845

[27] H. Xiong, B. Liu, H. Zhang, and J. Qin, “Theoretical insight into two-dimensional M-Pc monolayer as an excellent material for formaldehyde and phosgene sensing,” Appl. Surf. Sci., vol. 543, p. 148805, 2021. DOI: https://doi.org/https://doi.org/10.1016/j.apsusc.2020.148805.

[28] R. Xue, C. Wang, Y. Wang, Q. Guo, E. Dai, and Z. Nie, “Metal Embedded Phthalocyanine Monolayers as Promising Materials for Toxic Formaldehyde Gas Detection: Insights from DFT Calculations,” Metals (Basel)., vol. 12, no. 9, 2022. DOI: https://doi.org/10.3390/met12091442.

[29] Y. Yong, H. Cui, Q. Zhou, X. Su, Y. Kuang, and X. Li, “C2N monolayer as NH3 and NO sensors: A DFT study,” Appl. Surf. Sci., vol. 487, pp. 488–495, 2019. DOI: https://doi.org/https://doi.org/10.1016/j.apsusc.2019.05.040.

[30] B. Gergen, H. Nienhaus, W. H. Weinberg, and E. W. McFarland, “Chemically induced electronic excitations at metal surfaces,” Science, vol. 294, no. 5551, pp. 2521–2523, 2001. DOI: https://doi.org/10.1126/science.1066134

[31] G. Hoffmann, H. Chermette, and C. Morell, “Revisiting nucleophilicity: an index for chemical reactivity from a CDFT approach,” J. Mol. Model., vol. 30, no. 7, pp. 0–23, 2024. DOI: https://doi.org/10.1007/s00894-024-06020-0.

[32] I. Torres, S. Mehdi Aghaei, A. Rabiei Baboukani, C. Wang, and S. Bhansali, “Individual Gas Molecules Detection Using Zinc Oxide–Graphene Hybrid Nanosensor: A DFT Study,” C, vol. 4, no. 3, p. 44, 2018. DOI: https://doi.org/10.3390/c4030044.

[33] Y. Q. Su et al., “Stability of heterogeneous single-atom catalysts: a scaling law mapping thermodynamics to kinetics,” npj Comput. Mater., vol. 6, no. 1, 2020. DOI: https://doi.org/10.1038/s41524-020-00411-6.

[34] B. J. Cid et al., “Metal-decorated siligene as work function type sensor for NH3 detection: A DFT approach,” Appl. Surf. Sci., vol. 610, no. October 2022, pp. 1–8, 2023. DOI: https://doi.org/10.1016/j.apsusc.2022.155541.

[35] A. Manuscript et al., “Manuscript version : Accepted Manuscript van der Waals forces in density functional theory : The vdW- DF method”.

[36] T. Lenhart, K. Eckhardt, N. Fohrer, and H.-G. Frede, “Comparison of two different approaches of sensitivity analysis,” Phys. Chem. Earth, Parts A/B/C, vol. 27, no. 9–10, pp. 645–654, 2002. DOI: https://doi.org/10.1016/S1474-7065(02)00049-9

[37] T. Most and J. Will, “Sensitivity analysis using the Metamodel of Optimal Prognosis,” arXiv Prepr. arXiv2408.03590, 2024.

[38] J. Wang, “Electrochemical glucose biosensors,” Chem. Rev., vol. 108, no. 2, pp. 814–825, 2008. DOI: https://doi.org/10.1021/cr068123a

[39] M. Shokrekhodaei and S. Quinones, “Review of non-invasive glucose sensing techniques: optical, electrical and breath acetone,” Sensors, vol. 20, no. 5, p. 1251, 2020. DOI: https://doi.org/10.3390/s20051251

[40] H. Li et al., “Chemical and biomolecule sensing with organic field-effect transistors,” Chem. Rev., vol. 119, no. 1, pp. 3–35, 2018. DOI: https://doi.org/10.1021/acs.chemrev.8b00016

[41] A. Panahi et al., “DNA adsorption monitoring with interdigital open-gate junction field effect transistor for DNA storage applications: MD modeling, design, and experimental results,” Sensors Actuators A Phys., vol. 381, p. 116076, 2025. DOI: https://doi.org/10.1016/j.sna.2024.116076

[42] M. M. R. Nayini, H. Sayadian, N. Razavipour, and M. Rezazade, “Chemical-sensing of Amphetamine drug by inorganic AlN nano-cage: A DFT/TDDFT study,” Inorg. Chem. Commun., vol. 121, no. July, p. 108237, 2020. DOI: https://doi.org/10.1016/j.inoche.2020.108237.

[43] P. A. Monson, “Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory,” Microporous Mesoporous Mater., vol. 160, pp. 47–66, 2012. DOI: https://doi.org/10.1016/j.micromeso.2012.04.043

[44] A. Sharma, M. S. Khan, and M. Husain, “Adsorption of phosgene on Si-embedded MoS 2 sheet and electric field-assisted desorption: insights from DFT calculations,” J. Mater. Sci., vol. 54, pp. 11497–11508, 2019. DOI: https://doi.org/10.1007/s10853-019-03706-2

[45] K. Patel, B. Roondhe, S. D. Dabhi, and P. K. Jha, “A new flatland buddy as toxic gas scavenger: A first principles study,” J. Hazard. Mater., vol. 351, pp. 337–345, 2018. DOI: https://doi.org/https://doi.org/10.1016/j.jhazmat.2018.03.006.

Cómo citar

IEEE

[1]
M. Al-Anber y R. Hameed, «α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection», Rev. Colomb. Quim., vol. 53, n.º 2, pp. 19–28, jun. 2025.

ACM

[1]
Al-Anber, M. y Hameed, R. 2025. α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection. Revista Colombiana de Química. 53, 2 (jun. 2025), 19–28. DOI:https://doi.org/10.15446/rev.colomb.quim.v53n2.118870.

ACS

(1)
Al-Anber, M.; Hameed, R. α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection. Rev. Colomb. Quim. 2025, 53, 19-28.

APA

Al-Anber, M. & Hameed, R. (2025). α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection. Revista Colombiana de Química, 53(2), 19–28. https://doi.org/10.15446/rev.colomb.quim.v53n2.118870

ABNT

AL-ANBER, M.; HAMEED, R. α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection. Revista Colombiana de Química, [S. l.], v. 53, n. 2, p. 19–28, 2025. DOI: 10.15446/rev.colomb.quim.v53n2.118870. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/118870. Acesso em: 24 dic. 2025.

Chicago

Al-Anber, Mohanned, y Rasha Hameed. 2025. «α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection». Revista Colombiana De Química 53 (2):19-28. https://doi.org/10.15446/rev.colomb.quim.v53n2.118870.

Harvard

Al-Anber, M. y Hameed, R. (2025) «α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection», Revista Colombiana de Química, 53(2), pp. 19–28. doi: 10.15446/rev.colomb.quim.v53n2.118870.

MLA

Al-Anber, M., y R. Hameed. «α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection». Revista Colombiana de Química, vol. 53, n.º 2, junio de 2025, pp. 19-28, doi:10.15446/rev.colomb.quim.v53n2.118870.

Turabian

Al-Anber, Mohanned, y Rasha Hameed. «α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection». Revista Colombiana de Química 53, no. 2 (junio 4, 2025): 19–28. Accedido diciembre 24, 2025. https://revistas.unal.edu.co/index.php/rcolquim/article/view/118870.

Vancouver

1.
Al-Anber M, Hameed R. α-D-Glucose Adsorption on Al24N24 and Transition Metal-Doped Al23N24 Nanoclusters: New Insights for Biodetection. Rev. Colomb. Quim. [Internet]. 4 de junio de 2025 [citado 24 de diciembre de 2025];53(2):19-28. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/118870

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

174

Descargas

Los datos de descargas todavía no están disponibles.