Publicado

2025-08-08

Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua

Computational Study of Morphological Transitions in the Aggregation of the Lauric Acid Biosurfactant in Water

Estudo computacional das transições morfológicas na agregação do biossurfactante ácido láurico em água

DOI:

https://doi.org/10.15446/rev.colomb.quim.v53n2.119290

Palabras clave:

ácido láurico, dinámica molecular, transiciones morfológicas, sistemas micelares, biosurfactantes (es)
Lauric acid, molecular dynamics, morphological transitions, micellar systems, biosurfactants (en)
ácido láurico, dinâmica molecular, transições morfológicas, sistemas micelares, biossurfactantes (pt)

Descargas

Autores/as

En este estudio se evaluaron las transiciones morfológicas en la agregación del ácido láurico en agua mediante simulaciones de dinámica molecular (DM) y utilizando el campo de fuerza GROMOS53A6 y el modelo de carga puntual simple (SPC). Para ello, se evaluaron sistemas con concentraciones variables de ácido láurico (de 1 a 80 moléculas) para analizar la formación, la estabilidad y los cambios estructurales de los agregados micelares. Los resultados mostraron que la morfología de los agregados depende de la concentración: a bajas concentraciones se formaron micelas esféricas, mientras que a mayores concentraciones se observaron estructuras elipsoidales. El radio de giro (Rg) y la excentricidad (e) confirmaron estas transiciones y se identificaron tres zonas de agregación. Además, se analizaron las interacciones tipo enlaces de hidrógeno, cruciales para la estabilidad micelar, mediante funciones de distribución acumulada (CDF). Este trabajo proporciona una visión a nivel molecular sobre el autoensamblaje de ácidos grasos, relevante para aplicaciones en nanotecnología y biomedicina.

In this study, morphological transitions in the aggregation of lauric acid in water were evaluated by molecular dynamics (MD) simulations using the GROMOS53A6 force field and Simple Point Charge (SPC) model. For this purpose, systems with varying concentrations of lauric acid (for 1 to 80 molecules) were evaluated to analyze the formation, stability, and structural changes of micellar aggregates. The results showed that the morphology of the aggregates was concentration-dependent: at low concentrations spherical micelles were formed, while at higher concentrations ellipsoidal structures were observed. The radius of gyration (Rg) and eccentricity (e) confirmed these transitions, and three aggregation zones were identified. In addition, hydrogen bond type interactions, crucial for micellar stability, were analyzed using cumulative distribution functions (CDF). This work provides molecular-level insight into the self-assembly of fatty acids, relevant to applications in nanotechnology and biomedicine.

Neste estudo, as transições morfológicas na agregação de ácido láurico em água foram avaliadas usando simulações de dinâmica molecular (MD) usando os campos de força GROMOS53A6 e o modelo de carga pontual simples (SPC). Para este fim, sistemas com concentrações variadas de ácido láurico (de 1 a 80 moléculas) foram testados para analisar a formação, estabilidade e mudanças estruturais de agregados micelares. Os resultados mostraram que a morfologia dos agregados é dependente da concentração: em baixas concentrações, micelas esféricas foram formadas, enquanto em concentrações mais altas, estruturas elipsoidais foram observadas. O raio de giração (Rg) e a excentricidade (e) confirmaram essas transições, e três zonas de agregação foram identificadas. Além disso, as interações de ligação de hidrogênio, cruciais para a estabilidade micelar, foram analisadas usando funções de distribuição cumulativas (CDF). Este trabalho fornece insights em nível molecular sobre a automontagem de ácidos graxos, relevantes para aplicações em nanotecnologia e biomedicina.

Referencias

[1] A. K. Goyal, T. Garg, S. Bhandari y G. Rath, “Advancement in pulmonary drug delivery systems for treatment of tuberculosis”, in Nanostructures for drug delivery, pp. 669–695, 2017, Elsevier. DOI: https://doi.org/10.1016/B978-0-323-46143-6.00022-1.

[2] A. H. Maboudi, M. H. Lotfipour, M. Rasouli, M. H. Azhdari, R. MacLoughlin, S. Bekeschus y M. Doroudian, “Micelle-based nanoparticles with stimuli-responsive properties for drug delivery”, Nanotechnology Reviews, vol. 13, nro. 1, pp. 20230218, 2024. DOI: https://doi.org/10.1515/ntrev-2023-0218.

[3] S. Mondal, S. Das y A. K. Nandi, “A review on recent advances in polymer and peptide hydrogels”, Soft Matter, vol. 16, nro. 6, pp. 1404–1454, 2024. DOI: https://doi.org/10.1039/C9SM02127B.

[4] L. Chen, T. Jiang, C. Cai, L. Wang, J. Lin y X. Cao, “Polypeptide‐Based “Smart” Micelles for Dual‐Drug Delivery: A Combination Study of Experiments and Simulations”, Advanced healthcare materials, vol. 3, nro. 9, pp. 1508–1517, 2014. DOI: https://doi.org/10.1002/adhm.201300638.

[5] S. Honarmand, M. Mehraei, Z. A. Radmoghadam, E. Mohammadi, M. Dastjerdi, S. Akbari y A. Akbari, A, “Micelles-based systems and their versatile application in different industries”, NanoScience Technology, Vol. 10, pp. 1-31, 2023. DOI: https://doi.org/10.52319/j.nanoscitec.2023.24

[6] P. Brown, C P. Butts y J. Eastoe, “Stimuli-responsive surfactants”, Soft Matter, vol. 9, nro. 8, pp. 2365-2374, 2013. DOI: https://doi.org/10.1039/C3SM27716J.

[7] I. Johansson y M. Svensson, “Surfactants based on fatty acids and other natural hydrophobes”, Current Opinion in Colloid & Interface Science, vol. 6, pp. 178-88, 2001. DOI: https://doi.org/10.1016/S1359-0294(01)00076-0.

[8] A. L. Fameau, J. P. Douliez, F. Boue, F. Ott y F. Cousin, “Adsorption of multilamellar tubes with a temperature tunable diameter at the air/water interface”, Journal of Colloid and Interface Science, vol. 362, pp. 397-405, 2011. DOI: https://doi.org/10.1016/j.jcis.2011.06.080.

[9] A.-L. Fameau et al., “Smart Foams: Switching Reversibly between Ultrastable and Unstable Foams”, Angew. Chem. Int. Ed., vol. 50, pp. 8264-8269, 2011. DOI: https://doi.org/10.1002/anie.201102115

[10] L. R. Arriaga, D. Varade, D. Carriere, W. Drenckhan, D. Langevin, “Adsorption, organization and rheology of catanionic layers at the air/water interface”, Langmuir, vol. 29, pp. 3214-22, 2013. DOI: https://doi.org/10.1021/la304868n.

[11] L. M. Walker, “Rheology and structure of worm-like micelles”, Current opinion in colloid & interface science, vol. 6, nro. 5-6, pp. 451-456, 2001. DOI: https://doi.org/10.1016/S1359-0294(01)00116-9

[12] G. M. Demirbolat, G. P. Coskun, O. Erdogan y O. Cevik, “Long chain fatty acids can form aggregates and affect the membrane integrity”, Colloids and Surfaces B: Biointerfaces, vol. 204, pp. 111795, 2021. DOI: https://doi.org/10.1016/j.colsurfb.2021.111795.

[13] H. Arellano, V. Nardello-Rataj, S. Szunerits, R. Boukherroub y A. L. Fameau, “Saturated long chain fatty acids as possible natural alternative antibacterial agents: Opportunities and challenges”, Advances in Colloid and Interface Science, vol. 318, pp. 102952, 2023. DOI: https://doi.org/10.1016/j.cis.2023.102952

[14] Y. Ruiz-Morales y A. Romero-Martínez, “Coarse-Grain Molecular Dynamics Simulations to Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution”, Journal of Physical Chemistry B, vol. 122, nro. 14, pp. 3931-3943, 2018. DOI: https://doi.org 10.1021/acs.jpcb.7b10770.

[15] S. Illa-Tuset, D. C. Malaspina y J. Faraudo, “Coarse-grained molecular dynamics simulation of the interface behaviour and self-assembly of CTAB cationic surfactants”, Physical Chemistry Chemical Physics, vol. 20, nro. 41, pp. 26422-26430, 2018. DOI: https://doi.org/10.1039/C8CP04505D.

[16] D. Jones, J. E. Allen, Y. Yang, W. F. Drew Bennett, M. Gokhale, N. Moshiri y T. S. Rosing, “Accelerators for classical molecular dynamics simulations of biomolecules”, Journal of chemical theory and computation, vol. 18, nro. 7, pp. 4047-4069, 2022. DOI: https://doi.org/10.1021/acs.jctc.1c01214.

[17] S. Hossain, S. Berg, C. Bergström y P. Larsson, “Aggregation Behavior of Medium Chain Fatty Acids Studied by Coarse-Grained Molecular Dynamics Simulation”, AAPS Pharm. Sci. Tech, vol. 20, pp. 61, 2019. DOI: https://doi.org/10.1208/s12249-018-1289-4

[18] B. H. Morrow, P. H. Koenig y J. K. Shen, “Atomistic simulations of pH-dependent self-assembly of micelle and bilayer from fatty acids”, The Journal of Chemical Physics, vol. 137, nro. 19, pp. 1-5, 2012. DOI: https://doi.org/10.1063/1.4766313

[19] J. J. Joel, B. W. Drew y T. D. Peter, “Oleic Acid Phase Behavior from Molecular Dynamics Simulations”, Langmuir, vol. 30, nro. 35, pp. 10661-10667, 2014. DOI: https://doi.org/10.1021/la501962n

[20] S. Abel, J. Attia, S. Rémita, M. Marchi, W. Urbach y M. Goldmann, “Atomistic simulations of spontaneous formation and structural properties of linoleic acid micelles in water”, Chemical Physics Letters, vol. 481, nro. 1-3, pp. 124-129, 2009. DOI: https://doi.org/10.1016/j.cplett.2009.09.033

[21] E. Tunçer y B. Bayramoğlu, “Molecular dynamics simulations of duodenal self-assembly in the presence of different fatty acids”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, vol. 644, pp. 128866, 2022. DOI: https://doi.org/10.1016/j.colsurfa.2022.128866

[22] P. Khatua, A. Jana y U. Hansmann, “Effect of lauric acid on the stability of Aβ42 oligomers”, ACS omega, vol. 6, nro. 8, pp. 5795-5804, 2021. DOI: https://doi.org/10.1021/acsomega.0c06211

[23] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek y G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform”, J. Cheminform, vol. 4, nro. 17, pp. 1758-2946, 2012. DOI: https://doi.org/10.1186/1758-2946-4-17.

[24] A. K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P. C. Nair, C. Oostenbrink y A. E. Mark, “An Automated force field Topology Builder (ATB) and repository: version 1.0”, J. Chem. Theory Comput., vol. 7, pp. 4026-4037, 2011. DOI: https://doi.org/10.1021/ct200196m

[25] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess y E. Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers”, SoftwareX, vol. 1-2, pp. 19-25, 2015. DOI: https://doi.org/10.1016/j.softx.2015.06.001.

[26] C. Oostenbrink, A. Villa, A. E. Mark y W. F. van Gunsteren, “A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6” Journal of Computational Chemistry, vol. 25, nro. 13, pp. 1656-1676, 2004. DOI: https://doi.org/10.1002/jcc.20090.

[27] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren y J. Hermans, “Interaction models for water in relation to protein hydration”, in Intermolecular Forces: Proceedings of the 14th Jerusalem Symposium on Quantum Chemistry and Biochemistry held in Jerusalem, Israel, April 13-16, 1981, pp. 331-342. Dordrecht, D. Reidel Publishing Company. DOI: https://doi.org/10.1007/978-94-015-7658-1_21.

[28] J. G. Parra, G. Rodriguez, P. Iza, X. Zarate y E. Schott, “Evaluation of the affinity of asphaltene molecular models A1 and A2 by the water/oil interfaces based on a novel concept of solubility parameter profiles obtained from MD simulations”, Journal of Molecular Liquids, vol. 376, pp. 121430, 2023. DOI: https://doi.org/10.1016/j.molliq.2023.121430

[29] J. G. Parra, P. Iza, H. Dominguez, E. Schott y X. Zarate, “Unveiling the hydrophilic nature of SDS surfactant through molecular simulations: Exploring the influence of charge distribution on interfacial properties in the vacuum/SDS/water system”, Journal of Molecular Liquids, vol. 401, pp. 124692. DOI: https://doi.org/10.1016/j.molliq.2024.124692

[30] G. M. Barca et al., “Recent developments in the general atomic and molecular electronic structure system”, J. Chem. Phys., vol. 152, nro. 15, pp. 154102, 2020. DOI: https://doi.org/10.1063/5.0005188

[31] C. M. Breneman y K. B. Wiberg, “Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis”, Journal of computational chemistry, vol. 11, nro. 3, pp. 361-373, 1990. DOI: https://doi.org/10.1002/jcc.540110311

[32] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola y J. R. Haak, “Molecular dynamics with coupling to an external bath”, The Journal of Chemical Physics, vol. 81, nro. 8, pp. 3684–3690, 1984. DOI: https://doi.org/10.1063/1.448118.

[33] G. Bussi, D. Donadio y M. Parrinello, “Canonical sampling through velocity rescaling”, The Journal of Chemical Physics, vol. 126, nro. 1, pp. 014101, 2007. DOI: https://doi.org/10.1063/1.2408420.

[34] H. Grubmüller, H. Heller, A. Windemuth y K. Schulten, “Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions”, Molecular Simulation, vol. 6, nro. 1-3, pp. 121-142, 1991. DOI: https://doi.org/10.1080/08927029108022142.

[35] B. Hess, H. Bekker, H. J. C. Berendsen y J. G. Fraaije, “LINCS: A linear constraint solver for molecular simulations”, Journal of Computational Chemistry, vol. 18, nro. 12, pp. 1463-1472, 1997. DOI: https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H.

[36] T. Darden, D. York y L. Pedersen, “Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems”, The Journal of Chemical Physics, vol. 98, nro. 12, pp. 10089-10092, 1993. DOI: https://doi.org/10.1063/1.464397.

[37] C. D. Bruce, M. L. Berkowitz, L. Perera y M. D. Forbes, “Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution”, The Journal of Physical Chemistry B, vol. 106, nro. 15, pp. 3788-3793, 2002. DOI: https://doi.org/10.1021/jp013616z

[38] B. J. Chun, J. I. Choi y S. S. Jang, “Molecular dynamics simulation study of sodium dodecyl sulfate micelle: Water penetration and sodium dodecyl sulfate dissociation”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 474, pp. 36-43, 2015. DOI: https://doi.org/10.1016/j.colsurfa.2015.03.002.

[39] J. G. Parra, P. Iza, H. Dominguez y M. Salas, “Molecular aggregation of Muricatacin in water using MD simulations”, Conferencia LatinXchem, 2011. DOI: https://doi.org/10.1021/scimeetings.3c00461.

[40] W. Xu, X. Wang, Z. Zhong, A. Song y J. Hao, “Influence of counterions on lauric acid vesicles and theoretical consideration of vesicle stability”, The Journal of Physical Chemistry B, vol. 117, nro. 1, 242-251, 2013. DOI: https://doi.org/10.1021/jp306630n

[41] A. L. Fameau, A. Arnould y A. Saint-Jalmes, “Responsive self-assemblies based on fatty acids”, Current opinion in colloid and interface science, vol. 19, nro. 5, pp. 471-479, 2014. DOI: https://doi.org/10.1016/j.cocis.2014.08.005.

[42] J. P. Douliez, B. Pontoire y C. Gaillard, “Lipid tubes with a temperature-tunable diameter”, Chemphyschem, vol. 7, pp. 2071-2073, 2006. DOI: https://doi.org/10.1002/cphc.200600264.

[43] A. Kabedev, M. S. Hossain y P. Larsson, “Molecular dynamics simulations as a tool to understand drug solubilization in pharmaceutical systems”, Comprehensive Computational Chemistry, vol. 3, pp. 865-885, 2024. DOI: https://doi.org/10.1016/B978-0-12-821978-2.00114-8.

[44] M. Brehm, M. Thomas, S. Gehrke y B. Kirchner, “TRAVIS-A free analyzer for trajectories from molecular simulation”, The Journal of chemical physics, vol. 152, nro. 16, pp. 164105, 2020. DOI: https://doi.org/10.1063/5.0005078

[45] J. M. MacLeod y F. Rosei, Directed Assembly of Nanostructures, Comprehensive Nanoscience and Technology, Academic Press, pp. 13-68, 2011. DOI: https://doi.org/10.1016/B978-0-12-374396-1.00098-2.

[46] L. Kunche y U. Natarajan, “Structure and dynamics of aqueous solutions containing poly-(acrylic acid) and non-ionic surfactant pentaethylene glycol n-octyl ether (C8E5): A molecular simulations study”, Computational Materials Science, vol. 186, pp. 110043, 2021. DOI: https://doi.org/10.1016/j.commatsci.2020.110043.

Cómo citar

IEEE

[1]
J. G. Parra, P. Iza, y J. A. Alcalá, «Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua», Rev. Colomb. Quim., vol. 53, n.º 2, pp. 29–38, jun. 2025.

ACM

[1]
Parra, J.G., Iza, P. y Alcalá, J.A. 2025. Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua. Revista Colombiana de Química. 53, 2 (jun. 2025), 29–38. DOI:https://doi.org/10.15446/rev.colomb.quim.v53n2.119290.

ACS

(1)
Parra, J. G.; Iza, P.; Alcalá, J. A. Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua. Rev. Colomb. Quim. 2025, 53, 29-38.

APA

Parra, J. G., Iza, P. & Alcalá, J. A. (2025). Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua. Revista Colombiana de Química, 53(2), 29–38. https://doi.org/10.15446/rev.colomb.quim.v53n2.119290

ABNT

PARRA, J. G.; IZA, P.; ALCALÁ, J. A. Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua. Revista Colombiana de Química, [S. l.], v. 53, n. 2, p. 29–38, 2025. DOI: 10.15446/rev.colomb.quim.v53n2.119290. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/119290. Acesso em: 24 dic. 2025.

Chicago

Parra, José G., Peter Iza, y José A. Alcalá. 2025. «Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua». Revista Colombiana De Química 53 (2):29-38. https://doi.org/10.15446/rev.colomb.quim.v53n2.119290.

Harvard

Parra, J. G., Iza, P. y Alcalá, J. A. (2025) «Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua», Revista Colombiana de Química, 53(2), pp. 29–38. doi: 10.15446/rev.colomb.quim.v53n2.119290.

MLA

Parra, J. G., P. Iza, y J. A. Alcalá. «Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua». Revista Colombiana de Química, vol. 53, n.º 2, junio de 2025, pp. 29-38, doi:10.15446/rev.colomb.quim.v53n2.119290.

Turabian

Parra, José G., Peter Iza, y José A. Alcalá. «Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua». Revista Colombiana de Química 53, no. 2 (junio 4, 2025): 29–38. Accedido diciembre 24, 2025. https://revistas.unal.edu.co/index.php/rcolquim/article/view/119290.

Vancouver

1.
Parra JG, Iza P, Alcalá JA. Estudio computacional de las transiciones morfológicas en la agregación del biosurfactante ácido láurico en agua. Rev. Colomb. Quim. [Internet]. 4 de junio de 2025 [citado 24 de diciembre de 2025];53(2):29-38. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/119290

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

194

Descargas

Los datos de descargas todavía no están disponibles.