Publicado

2026-02-09

Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential

Síntesis biogénica de nanopartículas multifuncionales de óxido de zinc a partir de extracto de Rosmarinus officinalis L.: evaluación integral del potencial antibacteriano, antioxidante y antipalúdico

Síntese biogénica de nanopartículas multifuncionais de óxido de zinco utilizando extrato de Rosmarinus officinalis L.: avaliação abrangente do potencial antibacteriano, antioxidante e antimalárico

DOI:

https://doi.org/10.15446/rev.colomb.quim.v54n2.121766

Palabras clave:

Ecological synthesis, Antibacterial activity, Therapeutic nanoparticles (en)
Síntesis ecológica, Actividad antibacteriana, Nanopartículas terapéuticas (es)
Síntese ecológica, Atividade antibacteriana, Nanopartículas terapêuticas (pt)

Descargas

Autores/as

This study reports an eco-friendly synthesis of zinc oxide nanoparticles (ZnO-NPs) using Rosmarinus officinalis L. leaf extract as a reducing and stabilizing agent. The extract was characterized by Fourier Transform Infrared (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS). The biosynthesized ZnO-NPs were thoroughly characterized through UV-Vis spectroscopy showing a distinctive absorption peak at 372 nm, FT-IR confirms phytochemical capping, XRD reveals hexagonal wurtzite structure with crystallite size of 42.47 ± 1.20 nm, and SEM/EDX exhibits spherical morphology with high purity. The ZnO-NPs exhibited dose-dependent antibacterial activity against Staphylococcus aureus (24.0 ± 0.5 mm at 100 μg/mL) and Escherichia coli (18.0 ± 0.3 mm), outperforming the crude extract. Antioxidant assays, with ascorbic acid (vitamin C) as a positive control, demonstrated 89.2 ± 2.1% DPPH inhibition (IC50 = 28.4 μg/mL), comparable to ascorbic acid. Notably, ZnO-NPs showed 82.3 ± 3.2% β-haematin inhibition (50 μM), surpassing chloroquine (68.1 ± 2.8%), suggesting antimalarial potential. These findings highlight their potential as multifunctional therapeutic agents with a novel and promising antimalarial application.

Este estudio presenta una síntesis ecológica de nanopartículas de óxido de zinc (ZnO-NPs) utilizando extracto de hojas de Rosmarinus officinalis L. como agente reductor y estabilizante. El extracto se caracterizó mediante FTIR y GC-MS. Las ZnO-NPs biosintetizadas se caracterizaron exhaustivamente mediante espectroscopia UV-Vis, que mostró un pico de absorción característico a 372 nm; FT-IR, que confirmó el recubrimiento fitoquímico; XRD, que reveló una estructura hexagonal de wurtzita con un tamaño de cristalito de 42,47 ± 1,20 nm; y SEM/EDX, que mostró una morfología esférica con alta pureza. Las nanopartículas exhibieron actividad antibacteriana dosis-dependiente contra Staphylococcus aureus (24,0 ± 0,5 mm a 100 μg/mL) y Escherichia coli (18,0 ± 0,3 mm), superando al extracto crudo. Los ensayos antioxidantes, con ácido ascórbico (vitamina C) como control positivo, demostraron una inhibición del DPPH del 89,2 ± 2,1 % (IC50 = 28,4 μg/mL), comparable a la del ácido ascórbico. Cabe destacar que las nanopartículas de ZnO mostraron una inhibición de la β-hematina del 82,3 ± 3,2 % (50 μM), superando a la cloroquina (68,1 ± 2,8 %), lo que sugiere un potencial antipalúdico. Estos hallazgos resaltan su potencial como agentes terapéuticos multifuncionales con indicación para una aplicación antipalúdica novedosa y prometedora.

Este estudo reporta uma síntese ecológica de nanopartículas de óxido de zinco (ZnO-NPs) utilizando extrato da folha de Rosmarinus officinalis L. como agente redutor e estabilizante. O extrato foi caracterizado por FTIR e GC-MS. As ZnO-NPs biossintetizadas foram completamente caracterizadas por espectroscopia UV-Vis apresentando um pico de absorção distinto a 372 nm, FT-IR confirmando o capeamento fitoquímico, XRD revelando estrutura hexagonal wurtzita com um tamanho de cristalito de 42,47 ± 1,20 nm e SEM/EDX exibindo morfologia esférica com elevada pureza. As NPs exibiram atividade antibacteriana dose-dependente contra Staphylococcus aureus (24,0 ± 0,5 mm a 100 μg/mL) e Escherichia coli (18,0 ± 0,3 mm), superando o extrato bruto. Os ensaios antioxidantes, utilizando o ácido ascórbico (vitamina C) como controlo positivo, demonstraram uma inibição de 89,2 ± 2,1% do DPPH (CI50 = 28,4 μg/mL), comparável ao ácido ascórbico. Notavelmente, as NPs de ZnO apresentaram uma inibição de 82,3 ± 3,2% da β-hematina (50 μM), superando a cloroquina (68,1 ± 2,8%), sugerindo potencial antimalárico. Essas descobertas destacam seu potencial como agentes terapêuticos multifuncionais com indicação para uma nova e promissora aplicação antimalárica.

Referencias

[1] A. K. Bidan and Z. S. A. Al-Ali, “Assessment Defeating of Breast Cancer MCF-7 Cells, and Bacterial Species by Spherical Gold Nanoparticles Fabricated Through Reductive Ability of Framed Bio-Organic Molecules”, Chemistry Africa, vol. 7, pp. 3789–3808, 2024. DOI: https://doi.org/10.1007/s42250-024-00979-2.

[2] D. M. Ajayi, “Application of Nanotechnology in Medicine”, Clareus Scientific Medical Sciences, vol 2, no. 1, pp. 3–16, 2025. Available: https://clareus.org/pdf/csms/CSMS-02-008.pdf.

[3] R. A. Al-Refaia, L. Ahmed, A. A. Alkarimi, S. S. Al-Obaidy, F. A. Hussein, and D. N. Taha, “New Approaches for Preparation of Silver nanoparticles using Quince Plant Extract as Antibacterial Agents”, Journal of Global Pharma Technology, vol. 11, no. 9, 2009. Available: https://jgpt.co.in/index.php/jgpt/article/view/2902.

[4] S. H. A. Al-Majeed, Z. S. A. Al-Ali, and A. A. Turki, “Biomedical Assessment of Silver Nanoparticles Derived from L-Aspartic Acid Against Breast Cancer Cell Lines and Bacteria Strains”, BioNanoSci, vol. 13, pp. 1833–1848, 2023. DOI: https://doi.org/10.1007/s12668-023-01198-8.

[5] A. Amenah and Z. Al-Ali, “Reduced graphene oxide nanosheets derived from Iraqi Rhus coriaria (L.) fruits were evaluated for their anticancer and antibacterial properties”, Revista de la Facultad de Ciencias, vol. 13, pp. 49–72, 2024. DOI: https://doi.org/10.15446/rev.fac.cienc.v13n1.110790.

[6] A. S. Kadhim and Z. S. A. Al-Ali, “Green Synthesis of Reduced Graphene Oxide Nanosheets using Iraqi Rhus coriaria (L.) Fruits Extract and a Study of Its Anticancer Activity”, Iraqi Journal of Science, pp. 6253–6266, 2024. DOI: https://doi.org/10.24996/ijs.2024.65.11.5.

[7] F. J. González-Minero, L. Bravo-Díaz, and A. Ayala-Gómez, “Rosmarinus officinalis L. (Rosemary): An Ancient Plant with Uses in Personal Healthcare and Cosmetics”, Cosmetics, vol. 7, no. 4, p. 77, 2020. DOI: https://doi.org/10.3390/cosmetics7040077.

[8] M. U. Younas, et al., “Biogenic synthesis of zinc oxide nanoparticles using NARC G1 garlic (Allium sativum) extract, their photocatalytic activity for dye degradation and antioxidant activity of the extract”, Results in Chemistry, 102035, 2025. DOI: https://doi.org/10.1016/j.rechem.2025.102035.

[9] A. K. Bidan and Z. S. A. Al-Ali, “Biomedical Evaluation of Biosynthesized Silver Nanoparticles by Jasminum Sambac (L.) Aiton Against Breast Cancer Cell Line, and Both Bacterial Strains Colonies”, International Journal of Nanoscience, vol. 21, no. 6, 2250042, 2022. DOI: https://doi.org/10.1142/S0219581X22500429.

[10] A. K. Bidan and Z. S. A. Al-Ali, “The role of biomaterial constituents of Jasminum sambac (L.) Aiton leaves in copper nanoparticles synthesis and evaluates their activities as anti-breast cancer and antibacterial agents”, Inorganic and Nano-Metal Chemistry, vol. 55, no. 6, pp. 1–16, 2024. DOI: https://doi.org/10.1080/24701556.2024.2354480.

[11] A. Rastogi, et al., “Impact of metal and metal oxide nanoparticles on plant: a critical review”, Frontiers in chemistry, vol. 5, 78, 2017. DOI: https://doi.org/10.3389/fchem.2017.00078.

[12] M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, and N. Kannadasan, “Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 143, pp. 304–308, 2015. DOI: https://doi.org/10.1016/j.saa.2015.01.124.

[13] S. Sharma, M. Chauhan, S. Chauhan, and S. Kumar, “Effect of sintering temperature on structural and photocatalytic properties of zinc oxide nanoparticles”, Next Materials, vol. 7, 100367, 2025. DOI: https://doi.org/10.1016/j.nxmate.2024.100367.

[14] S. K. Nethi, S. Das, C. R. Patra, and S. Mukherjee, “Recent advances in inorganic nanomaterials for wound-healing applications”, Biomaterials science, vol. 7, pp. 2652–2674, 2019. DOI: https://doi.org/10.1039/C9BM00423H.

[15] A. Mishra, et al., “Metal nanoparticles against multi-drug-resistance bacteria”, Journal of inorganic biochemistry, vol. 237, 111938, 2022. DOI: https://doi.org/10.1016/j.jinorgbio.2022.111938.

[16] A. K. Bidan and Z. S. A. Al-Ali, “Oleic and Palmitic Acids with Bioderivatives Essential Oils Synthesized of Spherical Gold Nanoparticles and Its Anti-Human Breast Carcinoma MCF-7 In Vitro Examination”, BioNanoScience, vol. 13, pp. 2293–2306, 2023. DOI: https://doi.org/10.1007/s12668-023-01172-4.

[17] M. L. Leite, P. Comeau, A. Zaghwan, Y. Shen, and A. P. Manso, “Long-lasting antimicrobial effect of multipurpose ZnO nanoparticle-loaded dental resins enhanced by blue light photodynamic therapy”, Dental Materials, vol. 41, no. 3, pp. 347–355, 2025. DOI: https://doi.org/10.1016/j.dental.2024.12.006.

[18] D. Han, et al., “Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds”, Applied Catalysis B: Environmental, vol. 261, 118248, 2020. DOI: https://doi.org/10.1016/j.apcatb.2019.118248.

[19] O. Lushchak, A. Zayachkivska, and A. Vaiserman, “Metallic nanoantioxidants as potential therapeutics for type 2 diabetes: a hypothetical background and translational perspectives”, Oxidative medicine and cellular longevity, 3407375, 2018. DOI: https://doi.org/10.1155/2018/3407375.

[20] C.-W. Li, L.-L. Li, S. Chen, J.-X. Zhang, and W.-L. Lu, “Antioxidant nanotherapies for the treatment of inflammatory diseases”, Frontiers in Bioengineering and Biotechnology, vol. 8, 200, 2020. DOI: https://doi.org/10.3389/fbioe.2020.00200.

[21] K. Rahman, et al., “Nano-biotechnology: a new approach to treat and prevent malaria”, International Journal of Nanomedicine, pp. 1401–1410, 2019. DOI: https://doi.org/10.2147/ijn.s190692.

[22] S. Behboodi, F. Baghbani-Arani, S. Abdalan, and S. A. Sadat Shandiz, “Green Engineered Biomolecule-Capped Silver Nanoparticles Fabricated from Cichorium intybus Extract: In Vitro Assessment on Apoptosis Properties Toward Human Breast Cancer (MCF-7) Cells”, Biological Trace Element Research, vol. 187, pp. 392–402, 2019. DOI: https://doi.org/10.1016/j.nano.2019.02.017.

[23] R. A. A.-A. K. Al-Refaia, E. Alrikabi, A. A. Alkarimi, and R. Vasiliadou, “A New Synthesis of Copper Nanoparticles and Its Application as a Beta-Hematin Inhibitor”, Indonesian Journal of Chemistry, vol. 24, pp. 152–159, 2024. DOI: https://doi.org/10.22146/ijc.85583.

[24] B. Hilweh, H. Soliman, and M. M. Alajlani, “Green synthesis of zno-nps using rosemary leaves”, World Journal of Pharmacy and Pharmaceutical Sciences, vol, 12, no. 7, pp. 43–49, 2023.

[25] D. Das, B. C. Nath, P. Phukon, and S. K. Dolui, “Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity”, Colloids and Surfaces B: Biointerfaces, vol. 111, pp. 556-560, 2013. Available: https://www.wjpps.com/Wjpps_controller/abstract_id/18674.

[26] U. A. Sadoun, Z. S. Al-Ali, and A. M. Haddad, “Extraction of phenolic compounds from Iraqi Coriandrum Sativum L. and loaded on copolymeric hydrogels and examine there as drug delivery system and antioxidant”, Journal of Physics: Conference Series, vol. 2063, 012001, 2021. DOI: https://doi.org/10.1088/1742-6596/2063/1/012001.

[27] A. K. Keshari, A. Srivastava, A. K. Verma, and R. Srivastava, “Free radicals scavenging and protein protective property of Ocimum sanctum (L)”, British Journal of Pharmaceutical Research, vol. 14, pp. 1–10, 2016. Available: https://journaljpri.com/index.php/JPRI/article/view/249/500.

[28] D. Taramelli, S. Recalcati, N. Basilico, P. Olliaro, and G. Cairo, “Macrophage preconditioning with synthetic malaria pigment reduces cytokine production via heme iron-dependent oxidative stress”, Laboratory Investigation, vol. 80, pp. 1781–1788, 2000. DOI: https://doi.org/10.1038/labinvest.3780189.

[29] R. Al-Refaia and A. Alkarimi, “Synthesis and hemozoin inhibitor of side-chain modified copper-chloroquine derivatives”, in IOP Conference Series: Materials Science and Engineering, vol. 987, 012021, 2020. DOI: https://doi.org/10.1088/1757-899X/987/1/012021.

[30] R. Al-Refai’a, “Cowpea mosaic virus (CPMV) as a carrier vehicle for antimalarial drugs, modification, and application”, Int. J. Drug Delivery Technol, vol. 3, pp. 490–495, 2019. DOI: https://doi.org/10.15446/rev.fac.cienc.v13n2.113349.

[31] Y. A. Selim, M. A. Azb, I. Ragab, and M. H. M. Abd El-Azim, “Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities”, Scientific Reports, vol. 10, 3445, 2020. DOI: https://doi.org/10.1038/s41598-020-60541-1.

[32] E. F. El-Belely, et al., “Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities”, Nanomaterials, vol. 11, 95, 2021. DOI: https://doi.org/10.3390/nano11010095.

[33] K. Kihara and G. Donnay, “Anharmonic thermal vibrations in ZnO”, Can. Mineral, vol. 23, pp. 647–654, 1985. Available: https://pubs.geoscienceworld.org/canmin/article-abstract/23/4/647/11836/Anharmonic-thermal-vibrations-in-ZnO.

[34] C. M. Pelicano, N. J. Rapadas, and E. Magdaluyo, “X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method”, in AIP Conference Proceedings, vol. 1901, 020016, 2017. DOI: https://doi.org/10.1063/1.5010453.

[35] N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna, “Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms”, FEMS microbiology letters, vol. 279, pp. 71–76, 2008. DOI: https://doi.org/10.1111/j.1574-6968.2007.01012.x.

[36] S. Soltanian, M. Sheikhbahaei, N. Mohamadi, A. Pabarja, M. F. S. Abadi, and M. H. M. Tahroudi, “Biosynthesis of zinc oxide nanoparticles using Hertia intermedia and evaluation of its cytotoxic and antimicrobial activities”, BioNanoScience, vol. 11, pp. 245–255, 2021. DOI: https://doi.org/10.1007/s12668-020-00816-z.

[37] A. Sirelkhatim, et al., “Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism”, Nano-micro letters, vol. 7, pp. 219–242, 2015. DOI: https://doi.org/10.1007/s40820-015-0040-x.

[38] M. Li, L. Zhu, and D. Lin, “Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components”, Environmental science & technology, vol. 45, pp. 1977–1983, 2011. DOI: https://doi.org/10.1021/es102624t.

[39] A. V. Samrot, S. P. Ram Singh, R. Deenadhayalan, V. V. Rajesh, S. Padmanaban, and K. Radhakrishnan, “Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties—A review”, Oxygen, vol. 2, pp. 591–604, 2022. DOI: https://doi.org/10.3390/oxygen2040039.

[40] Y. Anzabi, “Biosynthesis of ZnO nanoparticles using barberry (Berberis vulgaris) extract and assessment of their physico-chemical properties and antibacterial activities”, Green Processing and Synthesis, vol. 7, no. 2, pp. 114–121, 2018. DOI: https://doi.org/10.1515/gps-2017-0014.

[41] L. Huang, C. Zhou, Y. Zhang, S. Zhang, and P. Zhang, “DBHP-Functionalized ZnO nanoparticles with improved antioxidant properties as lubricant additives”, Langmuir, vol. 35, pp. 4342–4352, 2019. DOI: https://doi.org/10.1021/acs.langmuir.9b00093.

[42] M. Patra, R. Mukherjee, M. Banik, D. Dutta, N. A. Begum, and T. Basu, “Calcium phosphate-quercetin nanocomposite (CPQN): A multi-functional nanoparticle having pH indicating, highly fluorescent and anti-oxidant properties”, Colloids and Surfaces B: Biointerfaces, vol. 154, pp. 63–73, 2017. DOI: https://doi.org/10.1016/j.colsurfb.2017.03.018.

[43] S. A. R. Ali, et al., “Synthesis, Characterization of Silver Nanoparticles Using Rosemary Extract and Their Application as Antioxidant, Antifungal and Antibacterial Agents”, Journal of Nanostructures, vol. 15, pp. 885–895, 2025. DOI: https://doi.org/10.22052/JNS.2025.03.007.

[44] X. Ge, Z. Cao, and L. Chu, “The antioxidant effect of the metal and metal-oxide nanoparticles”, Antioxidants, vol. 11, no. 4, 791, 2022. DOI: https://doi.org/10.3390/antiox11040791.

[45] H. Kumar, et al., “Antioxidant functionalized nanoparticles: A combat against oxidative stress”, Nanomaterials, vol. 10, no. 7, 334, 2020. DOI: https://doi.org/10.3390/nano10071334.

[46] L. Valgimigli, A. Baschieri, and R. Amorati, “Antioxidant activity of nanomaterials”, Journal of Materials Chemistry B, vol. 6, pp. 2036–2051, 2018. DOI: https://doi.org/10.1039/C8TB00107C.

[47] M. Chinappi, A. Via, P. Marcatili, and A. Tramontano, “On the mechanism of chloroquine resistance in Plasmodium falciparum”, PloS one, vol. 5, e14064, 2010. DOI: https://doi.org/10.1371/journal.pone.0014064.

[48] K. N. Olafson, T. Q. Nguyen, J. D. Rimer, and P. G. Vekilov, “Antimalarials inhibit hematin crystallization by unique drug–surface site interactions”, Proceedings of the National Academy of Sciences, vol. 114, pp. 7531–7536, 2017. DOI: https://doi.org/10.1073/pnas.1700125114.

Cómo citar

IEEE

[1]
R. A. K. Al-Refaia, Z. Shakir Al-Ali, E. Alrikabi, A. A. Alkarimi, y F. M. Alkhatib, «Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential», Rev. Colomb. Quim., vol. 54, n.º 2, pp. 3–12, feb. 2026.

ACM

[1]
Al-Refaia, R.A.K., Shakir Al-Ali, Z., Alrikabi, E., Alkarimi, A.A. y Alkhatib , F.M. 2026. Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential. Revista Colombiana de Química. 54, 2 (feb. 2026), 3–12. DOI:https://doi.org/10.15446/rev.colomb.quim.v54n2.121766.

ACS

(1)
Al-Refaia, R. A. K.; Shakir Al-Ali, Z.; Alrikabi, E.; Alkarimi, A. A.; Alkhatib , F. M. Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential. Rev. Colomb. Quim. 2026, 54, 3-12.

APA

Al-Refaia, R. A. K., Shakir Al-Ali, Z., Alrikabi, E., Alkarimi, A. A. & Alkhatib , F. M. (2026). Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential. Revista Colombiana de Química, 54(2), 3–12. https://doi.org/10.15446/rev.colomb.quim.v54n2.121766

ABNT

AL-REFAIA, R. A. K.; SHAKIR AL-ALI, Z.; ALRIKABI, E.; ALKARIMI, A. A.; ALKHATIB , F. M. Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential. Revista Colombiana de Química, [S. l.], v. 54, n. 2, p. 3–12, 2026. DOI: 10.15446/rev.colomb.quim.v54n2.121766. Disponível em: https://revistas.unal.edu.co/index.php/rcolquim/article/view/121766. Acesso em: 11 feb. 2026.

Chicago

Al-Refaia, Rana A. K., Zainab Shakir Al-Ali, Eman Alrikabi, Ahmed Ali Alkarimi, y Fatmah M. Alkhatib. 2026. «Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential». Revista Colombiana De Química 54 (2):3-12. https://doi.org/10.15446/rev.colomb.quim.v54n2.121766.

Harvard

Al-Refaia, R. A. K., Shakir Al-Ali, Z., Alrikabi, E., Alkarimi, A. A. y Alkhatib , F. M. (2026) «Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential», Revista Colombiana de Química, 54(2), pp. 3–12. doi: 10.15446/rev.colomb.quim.v54n2.121766.

MLA

Al-Refaia, R. A. K., Z. Shakir Al-Ali, E. Alrikabi, A. A. Alkarimi, y F. M. Alkhatib. «Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential». Revista Colombiana de Química, vol. 54, n.º 2, febrero de 2026, pp. 3-12, doi:10.15446/rev.colomb.quim.v54n2.121766.

Turabian

Al-Refaia, Rana A. K., Zainab Shakir Al-Ali, Eman Alrikabi, Ahmed Ali Alkarimi, y Fatmah M. Alkhatib. «Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential». Revista Colombiana de Química 54, no. 2 (febrero 9, 2026): 3–12. Accedido febrero 11, 2026. https://revistas.unal.edu.co/index.php/rcolquim/article/view/121766.

Vancouver

1.
Al-Refaia RAK, Shakir Al-Ali Z, Alrikabi E, Alkarimi AA, Alkhatib FM. Biogenic Synthesis of Multifunctional Zinc Oxide Nanoparticles Using Rosmarinus officinalis L. Extract: Comprehensive Evaluation of Antibacterial, Antioxidant, and Antimalarial Potential. Rev. Colomb. Quim. [Internet]. 9 de febrero de 2026 [citado 11 de febrero de 2026];54(2):3-12. Disponible en: https://revistas.unal.edu.co/index.php/rcolquim/article/view/121766

Descargar cita

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Visitas a la página del resumen del artículo

10

Descargas

Los datos de descargas todavía no están disponibles.