Multidisciplinary design optimisation techniques
Técnicas de diseño óptimo multidisciplinario
DOI:
https://doi.org/10.15446/ing.investig.v27n1.14785Palabras clave:
multidisciplinary design optimisation, system decomposition, collaborative optimisation (en)diseño óptimo multidisciplinario, descomposición de un sistema, optimización colaborativa (es)
Descargas
Design optimisation of a multidisciplinary project in engineering involves the decomposition of a system into disciplines and the subsequent association of their contributions. This work was aimed at presenting the most common decomposition and association techniques currently used in multidisciplinary design optimisation (MDO). Amongst the decomposition techniques this work includes hierarchical and non-hierarchical approaches as well as the most popular numerical procedures. The association techniques include: one-level methods (e.g. all-at-once optimisation and simultaneous analysis and design), multilevel methods (e.g. concurrent subspace optimisation and collaborative optimisation) and robust design. This work also incorporates an illustrative numerical example.
El proceso de optimización de un proyecto multidisciplinario en ingeniería involucra la descomposición de un sistema en distintas disciplinas y la posterior asociación de sus contribuciones. El objetivo de este trabajo es presentar los esquemas de desagregación y asociación más utilizados actualmente en procesos de diseño óptimo multidisciplinario — Multidisciplinary Design Optimization (MDO). Entre los esquemas de desagregación se presentan la descomposición jerárquica y no jerárquica, así como los métodos computacionales más comunes.
Los esquemas de asociación incluyen: formulación de un solo nivel (e.g., optimización integrada y análisis y diseño simultáneos), formulación de múltiples niveles (e.g., optimización en espacios concurrentes y optimización colaborativa) y diseño robusto. El trabajo presenta también un ejemplo de aplicación resuelto numéricamente.
Referencias
Abi, F. F., Ide, H., Shankar, V. J., and Sobieszczanski Sobieski, J., Optimization for Nonlinear Aeroelastic Tailoring Criteria., International Council for Aeronautical Sc., Proceedings of 16th Congress, Jerusalem, Vol. 2, 1988, pp. 1083-1091.
Adelman, H. A. and Haftka, R. T., Sensitivity Analysis of Discrete Structural Systems., AIAA J., Vol. 24, No. 5, 1986, pp. 823-832. DOI: https://doi.org/10.2514/3.48671
Agarwal, H. and Renaud, J. E., Reliability based design optimization using response surfaces in application to multidisciplinary systems., Engineering Optimization, Vol. 36, No. 3, 2004, pp. 291-311. DOI: https://doi.org/10.1080/03052150410001666578
Agarwal, H., Renaud, J. E., Preston, E. L. and Pad manabhan D., (2004), Uncertainty quantification using evidence theory in multidisciplinary design optimization., Reliability Engineering & System Safety, Vol. 85. No. 1-3, 2004, pp. 281-294. DOI: https://doi.org/10.1016/j.ress.2004.03.017
AIAA Technical Committee on Multidisciplinary Design Optimization (MDO)., White Paper on Current State of the Art., Disponible en: http://endo.sandia.gov/AIAA_MDOTC/sponsored/aiaa_paper.html, 1991.
Alexandrov, N. M. and Lewis, R. M., Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design., AIAA J., Vol. 40, No. 2, 2002, pp. 301-309. DOI: https://doi.org/10.2514/2.1646
Balling, R. J. and Sobieszczanski-Sobieski, J., Optimization of Coupled Systems: A Critical Overview of Approaches., AIAA J., Vol. 34, No. 1, 1996, pp. 6-17. DOI: https://doi.org/10.2514/3.13015
Balling, R. J. and Wilkinson, C. A., Execution of multi-disciplinary design optimization approaches on common test problems., AIAA J., Vol. 35, No. 1, 1997, pp. 178-186. DOI: https://doi.org/10.2514/2.7431
Balling, R.J. and Sobieszczanski-Sobieski, J., Optimization of Coupled Systems: A Critical
Overview of Approaches., AIAA-94-4330-CP, Proceedings of the 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, FL, USA, 1994, pp. 697-707.
Barthelemy, J. F., Engineering Design Applications of Heuristic Multilevel Optimization Methods., Second NASA/ Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, VA, Sep. 28-30, NASA CP - No 3031, 1988.
Barthelemy, J. F. and Sobieszczanski-Sobieski, J., Optimum Sensitivity Derivatives of Objective Functions in Nonlinear Programing., AIAA J., Vol. 22, No. 6, 1983, pp. 913-915. DOI: https://doi.org/10.2514/3.8172
Batill, S. M., Renaud, J. E. and Gu, X., Modeling and Simulation Uncertainty in Multidisciplinary Design Optimization., AIAA 200-4803, En: 8th AIAA/NASA/USAF/ ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA, Long Beach, California, Sep. 5-8, 2000. DOI: https://doi.org/10.2514/6.2000-4803
Bloebaum, C. L., Hajela, P., and Sobieski, J., Non Hierarchic System Decomposition in Structural Optimization., Engineering Optimization, Vol. 19, No. 3, 1992, pp. 171-186. DOI: https://doi.org/10.1080/03052159208941227
Braun, R. D. and Kroo, I. M., Development and application of the collaborative optimization architecture in a multidisciplinary design environment., En: N. M. Alexandrov y M. Y. Hussaini (Eds.) Multidisciplinary Design Optimization: State of the Art, Proceedings of the ICASE/NASA Langley Workshop on Multidisciplinary Design Optimization, Hampton, VA, SIAM, 1997. DOI: https://doi.org/10.2514/6.1996-4018
Braun, R. D., Gage, P., Kroo, I. and Sobieski, I., Implementation and performance issues in collaborative
optimization., En: 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, AIAA-96-4017, 1996, pp. 295-305.
Braun, R. D., Moore, A. A. and Kroo, I. M., Collaborative architecture to launch vehicle design., J. Spacecr. Rockets, Vol. 34, No. 4, 1997, pp. 478-486. DOI: https://doi.org/10.2514/2.3237
Chen, W., Allen, J. K., Tsui, K-L., and Mistree, F., A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors., ASME J. Mech. Des., Vol. 118, No. 4, 1996, pp. 478-485. DOI: https://doi.org/10.1115/1.2826915
Chen, W. and Lewis, K., A Robust Design Approach for Achieving Flexibility in Multidisciplinary Design., AIAA J., Vol. 37, No. 8, 1999, pp. 982-990. DOI: https://doi.org/10.2514/2.805
Danesh, M.R. and Jin, Y., An Agent-Based Decision Network for Concurrent Engineering Design., Concurrent Engineering, Vol. 9, No. 1, 2001, pp. 37-47. DOI: https://doi.org/10.1177/106329301772625411
Gu, X. Y. and Renaud, J. E., Implicit uncertainty propagation for robust collaborative optimization., En: Diaz A (Ed.) ASME Design Engineering Technical Conferences - Design Automation Conference, Pittsburgh, PA, DETC2001/DAC 21118, 2001. DOI: https://doi.org/10.1115/DETC2001/DAC-21118
Gu, X. Y., Renaud, J. E., Ashe, L. M., Batill, S. M., Budhiraja, A. S., and Krajewski, L. J., Decision-based collaborative optimization., ASME J. Mech. Des., Vol. 124, No. 1, 2002, pp. 1-13. DOI: https://doi.org/10.1115/1.1432991
Gu, X., Renaud, J. E., Batill, S. M., Brach, R. M. and Budhiraja, A. S., Worst case propagated uncertainty of multidisciplinary systems in robust design optimization., Structural and Multidisciplinary Optimization, Vol. 20, No. 3, 2000, pp. 190-213. DOI: https://doi.org/10.1007/s001580050148
Gu, X., Renaud, J.E., Ashe, L.M. and Batill, S.M., Decision-Based Collaborative Optimization under Uncertainty., En: ASME Design Engineering Technical Conferences, Baltimore, Maryland, DETC2000/DAC-14297, 2000. DOI: https://doi.org/10.1115/DETC2000/DAC-14297
Hall, D., Concurrent engineering: Defining terms and techniques., IEEE Spectrum, Vol. 28, No. 7, 1991, pp. 24-25.
Herskovits J., Mappa, P., Goulart, E. and Soares C. M. M., Mathematical programming models and algorithms for engineering design optimization., Computer Methods in Applied Mechanics and Engineering, Vol. 194, No. 30-33, 2005, pp. 3244-3268. DOI: https://doi.org/10.1016/j.cma.2004.12.017
Kalsi, M., Hacker, K. and Lewis, K., A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design., ASME J. Mech. Des., Vol. 123, No. 1, 2001, pp. 1-10. DOI: https://doi.org/10.1115/1.1334596
Kron, G., A Set of Principles to Interconnect the Solutions of Physical Systems., J. Appl. Physics, Vol. 24, No. 8, 1953, pp. 965. DOI: https://doi.org/10.1063/1.1721447
Kroo, I., Altus, S., Braun, R., Gage, P. and Sobieski, I., Multidisciplinary Optimization Methods for Aircraft Preliminary Design., En: 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, FL, AIAA 94-4325, 1994. DOI: https://doi.org/10.2514/6.1994-4325
Lewis, K., and Mistree, F., Modeling Interactions in Multidisciplinary Design: A Game Theoretic Approach., AIAA J., Vol. 35, No. 8, 1997, pp. 1387-1392 DOI: https://doi.org/10.2514/2.248
Lewis, K., and Mistree, F., Collaborative, Sequential, and Isolated Decisions in Design., ASME J. Mech. Des., Vol. 120, No. 4, 1998, pp. 643-652. DOI: https://doi.org/10.1115/1.2829327
Lewis, R.M., A Trust Region Framework for Managing Approximation Models in Engineering Optimization., AIAA-96-4101-CP, En: 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, September 4-6, 1996. DOI: https://doi.org/10.2514/6.1996-4101
Marston, M. and Mistree, F., An Implementation of Expected Utility Theory in Decision Based Design., En: ASME Design Engineering and Technical Conferences, Atlanta, GA, DETC98/DTM-5670, 1998. DOI: https://doi.org/10.1115/DETC98/DTM-5670
McAllister, C. D. and Simpson, T. W., Multidisciplinary robust design optimization of an internal combustion engine., ASME J. Mech. Des., Vol. 125, No. 1, 2003, pp. 124-130 DOI: https://doi.org/10.1115/1.1543978
McAllister, C. D., Simpson, T. W., Hacker, K. and Lewis, K., Application of Multidisciplinary Design Optimization to Racecar Design and Analysis., En: 9th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, 2002. DOI: https://doi.org/10.2514/6.2002-5608
McAllister, C. D., Simpson, T. W., Hacker, K., Lewis, K. and Messac, A., Integrating linear physical programming within collaborative optimization for multiobjective multidisciplinary design optimization., Struct. Multidisc. Optim., Vol. 29, No. 3, 2005, pp. 178-189. DOI: https://doi.org/10.1007/s00158-004-0481-1
McAllister, C. D., Simpson, T. W., Lewis, K. and Messac, A., Robust Multiobjective Optimization through Collaborative Optimization and Linear Physical Program ming., En: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, 2004. DOI: https://doi.org/10.2514/6.2004-4549
McAllister, C. D., Simpson, T. W. and Yukish, M., Goal programming applications in multidisciplinary design optimization., En: 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, AIAA-2000-4717, 2000. DOI: https://doi.org/10.2514/6.2000-4717
Phadke, M. S., Quality Engineering Using Robust De sign., Prentice Hall, Englewood Cliffs, New Jersey, 1989.
Prasad, B., Concurrent engineering fundamentals., Upper Saddle River, NJ: Prentice-Hall Inc., 1996. Renaud, J. E., Sequential Approximation in Non-Hierarchic System Decomposition and Optimization: A Multi-Disciplinary Design Tool., Doctoral Dissertation, Rensselaer Polytechnic Institute, 1992.
Shankar, J., Ribbens, C., Haftka, R. and Watson, L., Computational study of nonhierarchical decomposition algorithm., Computational Optimization and Applications, Vol. 2, 1993, pp. 273-293. DOI: https://doi.org/10.1007/BF01299452
Sobieski, I. P. and Kroo, I. M., Aircraft design using collaborative optimization., En: 34th Aerospace Sciences Meeting and Exhibition, Reno, NV, AIAA-96-0715, 1996. DOI: https://doi.org/10.2514/6.1996-715
Sobieszczanski-Sobieski, J., Optimization by decomposition: A step from hierarchic to non-hierarchic systems., En: 2nd NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, VA, 1988, NASA CP 3031, 1988a, pp. 1-27.
Sobieszczanski-Sobieski, J., Sensitivity Analysis and Multidisciplinary Optimization for Aircraft Design: Recent Advances and Results., Int’l Council for Aeronautical Sc., En: 16th Congress, Jerusalem. Aug.- Sept., Vol 2, 1988b, pp. 953-964.
Sobieszczanski-Sobieski, J., On the Sensitivity of Complex, Internally Coupled Systems., AIAA J., Vol. 28, No. 1, 1990a. DOI: https://doi.org/10.2514/3.10366
Sobieszczanski-Sobieski, J., Sensitivity Analysis of Complex Coupled Systems Extended to Second
and Higher Order Derivatives., AIAA J., Vol. 28, No. 4, 1990b.
Sobieszczanski-Sobieski, J., and Haftka, R. T., Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments., Structural Optimization, Vol. 14, No. 1, 1997, pp. 1-23. DOI: https://doi.org/10.1007/BF01197554
Sobieszczanski-Sobieski. J., James, B. B. and Dovi, A. R., Structural Optimization by Multilevel Decomposition, AIAA J., Vol. 23, No. 11, 1985, pp. 1775-1782. DOI: https://doi.org/10.2514/3.9165
Sobiesznanski-Sobieski, J., A Linear Decomposition Method for Large Optimization Problems - Blueprint for Development., NASA TM 83248, 1982.
Tappeta, R. V. and Renaud, J. E., Multiobjective collaborative optimization., ASME J. Mech. Des., Vol. 119, No. 3, 1997, pp. 403-411. DOI: https://doi.org/10.1115/1.2826362
Tappeta, R. V., Renaud, J. E., Messac, A. and Sundara raj, G. J., Interactive Physical Programming: Tradeoff Analysis and Decision Making in Multidisciplinary Optimization., AIAA J., Vol. 38, No. 5, 2000, pp. 917-926. DOI: https://doi.org/10.2514/2.1048
Womack, J., Jones, D. and Roos, D., The Machine that Changed the World., Rawsan Associates, New York, New York, 1990.
Wrenn, G. A. and Dovi, A. R., Multilevel Decomposition Approach to the Preliminary Sizing of a Transport Aircraft Wing., AIAA J. of Aircraft, Vol. 25, No. 7, 1988, pp. 632-638. DOI: https://doi.org/10.2514/3.45634
Yates, E. C., Aerodynamic Sensitivities from Subsonic, Sonic, and Supersonic Unsteady, Nonplanar Lifting-Surface Theory., NASA TM 100502, 1987.
Ziemke, M. C., and Spann, M. S., Warning: Don’t be half-hearted in your efforts to employ concurrent engineering., Industrial Engineering, Vol. 23, No. 2, 1991, pp. 45-49.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Mª C. González Cruz, Jaime Aguilar Zambrano, Leonor Córdoba, Cristian Chamorro, Norah Hurtado, Andrés Valencia, Manuel Valencia. (2009). Multidisciplinary teams designing products for aiding disabled people. Ingeniería e Investigación, 29(3), p.142. https://doi.org/10.15446/ing.investig.v29n3.15198.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2007 Andres Tovar, Nelson Arzola de la Peña, Alexander Gómez Cassab

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores o titulares del derecho de autor de cada artículo confieren a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia una autorización no exclusiva, limitada y gratuita sobre el artículo que una vez evaluado y aprobado se envía para su posterior publicación ajustándose a las siguientes características:
1. Se remite la versión corregida de acuerdo con las sugerencias de los evaluadores y se aclara que el artículo mencionado se trata de un documento inédito sobre el que se tienen los derechos que se autorizan y se asume total responsabilidad por el contenido de su obra ante la revista Ingeniería e Investigación, la Universidad Nacional de Colombia y ante terceros.
2. La autorización conferida a la revista estará vigente a partir de la fecha en que se incluye en el volumen y número respectivo de la revista Ingeniería e Investigación en el Sistema Open Journal Systems y en la página principal de la revista (https://revistas.unal.edu.co/index.php/ingeinv), así como en las diferentes bases e índices de datos en que se encuentra indexada la publicación.
3. Los autores autorizan a la revista Ingeniería e Investigación de la Universidad Nacional de Colombia para publicar el documento en el formato en que sea requerido (impreso, digital, electrónico o cualquier otro conocido o por conocer) y autorizan a la revista Ingeniería e Investigación para incluir la obra en los índices y buscadores que estimen necesarios para promover su difusión.
4. Los autores aceptan que la autorización se hace a título gratuito, por lo tanto renuncian a recibir emolumento alguno por la publicación, distribución, comunicación pública y cualquier otro uso que se haga en los términos de la presente autorización.